THE MATHEMATICS
OF GAMES
AND GAMBLING

by

Edward W. Packel
Lake Forest College

THE MATHEMATICAL ASSOCIATION
OF AMERICA



Third Printing
©Copyright 1981 by the Mathematical Association of America (Inc.)
All rights reserved under International Pan-American Copyright Conventions.
Published in Washington, D.C. by The Mathematical Association of America

Library of Congress Catalog Card Number: 80-85037
Complete Set ISBN 0-88385-600-X
Volume 28 (0-88385-628-X
Manufactured in the United States of America



Note to the Reader

This book is one of a series written by professional mathematicians in
order to make some important mathematical ideas interesting and under-
standable to a large audience of high school students and laymen. Most
of the volumes in the New Mathematical Library cover topics not usually
included in the high school curriculum; they vary in difficulty, and, even
within a single book, some parts require a greater degree of concentration
than others. Thus, while the reader needs little technical knowledge to
understand most of these books, he will have to make an intellectual
effort.

If the reader has so far encountered mathematics only in the classroom
work, he should keep in mind that a book on mathematics cannot be
read quickly. Nor must he expect to understand all parts of the book on
first reading. He should feel free to skip complicated parts and return to
them later; often an argument will be clarified by a subsequent remark.
On the other hand, sections containing thoroughly familiar material may
be read very quickly.

The best way to learn mathematics is to do mathematics. The reader is
urged to acquire the habit of reading with paper and pencil in hand; in
this way mathematics will become increasingly meaningful to him.

The authors and editorial committee are interested in reactions to the
books in this series, and hope that readers will write to: Anneli Lax,
Editor, New Mathematical Library, NEW YORK UNIVERSITY, THE
COURANT INSTITUTE OF MATHEMATICAL SCIENCES, 251 Mercer Street,
New York, N. Y. 10012.

The Editors
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Preface

The purpose of this book is to introduce and develop some of the
important and beautiful elementary mathematics needed for rational
analysis of various gambling and game activities. While the only formal
mathematics background assumed is high school algebra, some en-
thusiasm for and facility with quantitative reasoning will also serve the
reader well. The book will, I hope, be of interest to:

1) Bright high school students with a good mathematics background
and an (often related) interest in games of chance.

2) Students in elementary probability theory courses who might appre-
ciate an informal supplementary text focusing on applications to
gambling and games.

3) Individuals with some background in mathematics who are inter-
ested in some common and uncommon elementary game-oriented
applications and their analysis.

4) That subset of the numerate gambling and game-playing public who
would like to examine the mathematics behind games they might
enjoy and who would like to see mathematical justification for what
constitutes “good” (rational) play in such games.

One guiding principle of the book is that no mathematics is introduced
without specific examples and applications to motivate the theory. The
mathematics developed ranges from the predictable concepts of probabil-
ity, expectation, and binomial coefficients to some less well-known ideas
of elementary game theory. A wide variety of standard games is consid-
ered along with a few more recently popular and unusual activities such
as backgammon and state lotteries. Generally it is not the play of the
game, but the reasoning behind the play that provides the empbhasis.

Some readers may be temporarily slowed down or frustrated by the
omission of detailed rules for a few of the games analyzed. There are two
important reasons for such omissions. First, I believe that initial exposure
to a new game should be acquired through experience rather than a
formal study of rules. Thus, I would encourage readers unfamiliar with
backgammon to find knowledgeable partners and to learn by playing. In
a classroom setting, the promise of a class tournament is an excellent way
to encourage students to master the rules before any mathematical
analysis is engaged in. Secondly, the book is not intended to be a “how
t0” document and I would urge readers interested in detailed rules and
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viii PREFACE

neatly packaged advice for backgammon, bridge, poker, or horse racing
to consult one of the many specialized books on the particular topic (see
the Bibliography). I give little “advice” that is not justified by prior
mathematical analysis. In most cases it would be unreasonable to claim
that this book will directly improve one’s gaming ability, though 1 would
hope that the insights provided into rational analysis and play will have
some spinoff in that direction. Exceptions to this disclaimer may be
backgammon, which is treated in some detail, and the various gambling
house games, for which it is made quite clear (blackjack being a possible
exception) that the optimal strategy is abstinence.

After an historical and literary initial chapter, subsequent chapters
(except for the last) each include from 10 to 12 carefully selected
exercises. These game-related questions are not primarily intended as
drill problems, but rather for readers genuinely interested in expansion of
ideas treated in the text. Some of the later exercises for each chapter may
be quite challenging and some questions are open-ended, with emphasis
on analysis and explanation rather than numerical answers. Chapter 2
provides the foundation for most of what follows, and should be mas-
tered. The first two sections of Chapter 4 are needed also for Chapter 5.
Otherwise chapters are, with minor exceptions, independent of one
another. Sections referring to particular games can be included or omitted
according to taste. The Bibliography presents, among other things, full
reference information for books and articles referred to in abbreviated
form in the text.

No serious judgments on the morality of gambling are intended in the
book, though readers will no doubt draw inferences from the tone and
tenor of my remarks at various points. While it should be clear that I am
enthusiastic about games of chance and skill, I hope it is equally clear
that 1 am even more enthusiastic about the mathematics behind such
games. It is this latter enthusiasm that 1 hope will be transferred to the
reader.

Numerous institutions and individuals have helped me in shaping this
book. Lake Forest College and three separate groups of students took
their chances with me over the last 3 years in an experimental freshman
level course from which the final text has evolved. The Division of Social
Sciences and Humanities at California Institute of Technology provided
office space and technical assistance. Members of the New Mathematical
Library subcommittee of the Mathematical Association of America have
provided exceedingly thorough and helpful comments on the manuscript.
I would also like to thank Bruce Cain, Charles Maland, and Kathryn
Rindskopf for their valuable suggestions at various stages in the writing
process. Finally, I am indebted to Gertrude Lewin for her typing of the
first draft and Barbara Calli for her lovely artwork and typing of the
final draft.
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CHAPTER 1

The Phenomenon of Gambling

A selective bistory

Fascination with games of chance and speculation on the results of
repeated random trials appear to be common to almost all societies,
past and present. It is tempting to view prehistoric man’s day-to-day
existence as a continual series of gambles against nature with the
ultimate stake, survival, as the nonnegotiable wager. With nature some-
what under control and a relatively predictable daily routine assured,
man’s necessity to gamble is relieved. Some of his newly found leisure is
used to recapture, act out and celebrate those breathtaking earlier times.

The above is certainly a plausible scenario for the origins of games
and gambling (and, for that matter, of art, poetry, politics, sports and
war). While historical and archeological evidence does not currently
exist to support fully claims that gambling is a primeval human instinct,
the fact remains that gambling arose at a very early time and continued
to survive and flourish despite legal and religious restrictions, social
condemnation, and even very unfavorable house odds.

An early form of our six-faced die, found commonly on Assyrian and
Sumerian archeological sites, is the astragalus (the bone just above the
heel bone) of sheep, deer, and other animals of comparable size.
Babylonian and early Egyptian sites (circa 3600 B.C.) provide clear
evidence that polished and marked astragali were used along with
colored pebbles (counters and markers) and a variety of game-type
“boards.” A suitably chosen astragalus will fall with four possible
orientations, making it a natural gaming device or randomizer. The fact
that the orientations do not occur with equal likelihood and that each
astragalus has different randomizing characteristics would have discour-
aged any general theory and analysis of its behavior. This has also been
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cited by some (and discounted by others) as one reason why even a
primitive body of ideas on probability did not emerge in ancient times.

Inevitably, the astragalus gave way to increasingly true versions of the
modern six-faced die, but not without a number of offspring such as
throwing sticks, other regular and irregular polyhedral dice, and various
forms of purposely loaded and unfairly marked dice. By the time of the
birth of Christ man finds himself well endowed with randomizers, board
games, and the will and imagination to design and play an endless
variety of additional games. As F. N. David states in her book Games,
Gods, and Gambling,

The idea of counting and enumeration is firmly established but not the
concept of number as we know it now. The paraphernalia of chance
events has been organized for man’s pleasure and entertainment. Ran-
domization, the blind goddess, fate, fortune, call it what you will, is an
accepted part of life.

Playing cards appeared in Europe around the tenth century and their
evolution has a colorful history. Especially interesting is the origin of
the four suits and the royal succession of historical figures represented
as particular jacks, queens, and kings. Having touched upon the begin-
nings of dice and cards, two staples of modern day gambling, we
summarize in Table I data for other well known randomizing devices,
some of the games played with them, and various other gambling
activities common today. Since our overall interest is not simply in
aspects of gambling but in the mathematics of practical and theoretical
game situations, we also include information on games of pure skill (no
randomizing factors involved) and on the theory of games.

With a variety of reasonably accurate randomizing devices and a
newly emerging theory of probabilities to analyze them, gambling
acquired new status in the seventeenth century. Indeed many of the
finest scientific and philosophical minds of the times were excitedly
engaged in discussing practical and theoretical problems posed by
gaming situations. Cardano wrote The Book on Games of Chance in
about 1520, though it was not published until 1663. Pascal and Fermat
engaged in their famous correspondence on probability and gambling
questions in 1654. In 1658 Pascal proposed his famous wager (see p.
23), which can be viewed as a game theoretic approach to the question
of belief in God. The expectation concept was introduced by C. Huygens
in 1657 in the first printed probability text, Calculating in Games of
Chance. Throughout this time Leibniz made philosophical contributions
to the foundations of probability. The remarkable development of
probability theory in the latter half of the seventeenth century was
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TABLE 1
Origins of Some Gambling-related Randomizers, Games, and Activities
Event Date of origin Region of origin
Astragalus About 3600 B.C. Middle East
Standard die About 2000 B.C. Egypt and elsewhere
Playing cards 10th century; China;
14th century Western Europe
Roulette wheel About 1800 France
Poker About 1800 Louisiana territory
Backgammon Ancient predecessors, Middle East
3000 B.C.
Modern rules, 1743 England
Doubling cube, 1925
Craps Early 20th century U.S.A,, From English
game of Hazard
Chuck-a-luck Early 20th century Traveling carnivals;
from Hazard
Bingo and 1880-1900 England; traveling
Keno type games carnivals
Bridge Whist games, 16th century England
Auction, 1900’s England
Contract, 1915-1929 U.S.A.
Lotteries Ist century; Roman Empire;
Middle Ages Italy
Life Insurance 1583 England
Horse race betting  16th century England
Chess B.C.—disputed ?
7th century India
Checkers 12th century France
Go About 1000 A.D. China
Game theory 1928 Von Neumann, Germany
1944 Von Neumann and

Morgenstern, U.S.A.

climaxed by Jakob Bernoulli’s Ars Conjectandi (written in the early
1690’s, published in 1713), a brilliant forerunner of the theory, practice,
and philosophical complexities which characterize the subject today. All
of this scholarly attention and reasoned analysis might be thought to
have stripped gambling of its aura of mystery, irrationality and notoriety,
but the nature of the beast is not to be underestimated. Fortunes
continued to be won and lost, bets were placed on both sides of games
fair and unfair, and officialdom was as zealous as ever at restraining the
wagers of sin.
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The situation today has evolved in somewhat predictable fashion.
People gamble on a vastly increased variety of games, most of whose
optimal strategies and odds have been analyzed completely on paper or
to a high degree of approximation on digital computers. Gambling is
still controlled and in varying degrees illegal in most countries and
frowned upon by most religions. Nonetheless, large and lucrative gam-
bling meccas have sprung up in Nevada, Monte Carlo, Atlantic City,
and increasingly many other centers throughout the world. States and
countries which restrict private gambling by their inhabitants sponsor a
dizzying variety of lotteries and take a healthy cut from the proceeds of
racetracks. In virtually all phases of this organized gambling the odds
are soundly stacked against the player; yet masses of people play
happily, compulsively, poorly and well. On the local level bridge and
backgammon clubs flourish, often with master points and pride rather
than money at stake. Church groups sponsor bingo days and Las Vegas
nights (for worthy causes) with consistent success. Private poker games,
crap games, and illegal bookmaking are widespread. The elusive num-
bers racket in the United States has a turnover estimated at well over a
billion dollars per year.

In summary, the phenomenon of gambling is ubiquitous, recognizing
no geographic, social or intellectual boundaries. Its mystery and appeal
are a sometimes random mixture of superstition, excitement, hope,
escapism, greed, snobbery, and mathematical fascination. Gambling is a
vital part of some lives and an important sidelight for many others. It is
in some cases destructive and potentially addictive, and in others a
delight and a diversion. Gambling is, in mild forms, an almost universal
childhood activity; its play is characterized by extremes of rationality,
rationalization and irrationality; it is a serious, large, and growing
business. Gambling, with all of its diverse, paradoxical and fascinating
qualities, is here to stay.

The gambler in fact and fiction

People who gamble can be subdivided into three possibly overlapping
types. The casual gambler plays at stakes sufficiently small that maxi-
mum losses will not usually be a financial hardship. He of course hopes
to win, but may not expect to win and brings a clear sense of enjoyment
to the act of gambling. While losses may bring regrets, personal em-
barrassment, and even guilt and self-recrimination, these feelings pass
quickly and are not dwelt upon. The casual gambler may not be aware
of odds or strategic subtleties and may not even fully comprehend the
rules of the game. He does, however, know how much time and money
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he can afford to spend, and is able to tear himself away when these
limits are approached.

The compulsive gambler is happy primarily when in the act of
gambling. The dizzying contrast of emotions between the exultation of
winning and the despair of losing is fueled by the belief that the player
is truly blessed with a forthcoming streak of luck or a self-discovered
inexplicable system which must work. Consequently the size of bets will
escalate whenever possible, and quitting either while ahead or behind is
an act of supreme willpower or financial necessity. The ability to
rationalize, to violate self-made promises, and to find a way to make the
next bet is present in creative abundance. The parallel with alcoholism
is apparent, and it was no longshot that a world wide organization
entitled Gamblers Anonymous began in California in 1947.

What are the internal and external forces that drive a compulsive
gambler to continue this often self-destructive behavior? A complete
answer to this question, if indeed one exists, would take us too far afield
here. We note, however, that psychological research over the past two
decades provides some fascinating answers based upon experiments
with animals and humans. Among the various reinforcement schemes
used to induce repetitive behavior, the most effective have been the
“variable ratio reinforcement schedules.” Such schedules provide rein-
forcement in “random” fashion but with the frequency of reinforcement
increasing with the number of repetitions. One can hardly imagine a
random reinforcement schedule more effective than the payoffs on a
roulette wheel or a slot machine!

The professional gambler may at times gamble casually or compul-
sively. In any case he gambles well and makes a good living out of it, for
otherwise he would be in another profession. We are not referring here
to racetrack owners, casino owners, numbers racketeers, and the like;
for they, like bankers, do not work a gamble but a near sure thing, The
professional gambler may have little mathematical background, but he
fathoms odds, games, and people with seldom erring instinct. His
professional activities involve private games such as poker and bridge,
informed betting at racetracks, and well placed bets on any variety of
games and events at odds over which he exercises careful scrutiny if not
control. He may indulge as a whim in such casino games as Keno,
roulette, craps, and slot machines, but only for pleasure or to feed the
nonprofessional aspects of his gambling instinct. Indeed he realizes that
nobody plays such house games regularly and profits from it. (A
possible exception, as we shall see in Chapter 5, is blackjack or twenty
one.)

Clearly the above are rather stereotyped descriptions of the three
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gambling types proposed. In fact, the casual gambler may have all the
game sense of the professional or the passion of the compulsive player.
The point is that, whatever the inclinations, the casual gambler plays
occasionally, under control, and only with nonessential funds. The
compulsive gambler may have an outwardly ordinary existence and
regular employment. The compulsion may manifest itself at irregular
intervals, but when it does the gambler is, in a sense, out of control and
possibly out of a considerable sum of money. In the following para-
graphs we attempt to add flesh to our gambling stereotypes by describ-
ing some specific characters from history and fiction.

One of the most remarkable yet unrecognized characters in history
must be Girolamo Cardano. Born in Italy in 1501, his life, even by
conservative accounts, is awe-inspiring in its fullness, vicissitude,
notoriety, controversy and, above all, intellectual breadth and attain-
ment. A brilliant medical student, Cardano became the most highly
regarded and sought-after physician in Europe. He was one of the
foremost scientific minds of his era and published numerous popular
and scientific works. His book on games is judged to be a first and
major step in the evolution of probability theory. He is a central figure
in the famous mathematical controversy concerning priority in solving a
class of third degree polynomial equations. His no doubt exaggerated
but brutally frank and self-analytic Autobiography is the first of its kind
and is still read by literature students today. Overall Cardano left 131
printed works and 111 additional books in manuscript (he claimed to
have burned another 170).

In contrast to this impressive array of intellectual achievements,
Cardano spent time with his family in the Milan poorhouse; developed
bitter enemies (and loyal friends) throughout his life; engaged in con-
stant controversy and debate on questions in medicine, science, and
mathematics; and saw his oldest son executed for murder and his
youngest son jailed and exiled as a thief. He dabbled in astrology,
casting horoscopes for royalty and of Jesus Christ (after the fact).
Partially as a result of this latter activity he was arrested and jailed as a
heretic at age 69. Throughout all this Cardano gambled incessantly. A
moving and rather supportive account of this stormy life can be found
in Ore’s book Cardano, The Gambling Scholar, which also includes a
translation of Cardano’s The Book on Games of Chance.

Cardano seems to have played and written about almost all types of
games common in his time. He excelled in chess, a game accompanied
then by much betting and handicapping. He played backgammon and
other dice games along with a variety of card games including primero,
an early version of poker. His moral observations on gambling are both
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perceptive and amusing, especially in view of his almost total inability
to heed his own advice. Thus he says in The Book on Games of Chance in
a section on “Who Should Play and When”: “So, if a person be
renowned for wisdom, or if he be dignified by a magistracy or any other
civil honor or by a priesthood, it is all the worse for him to play.” He
follows later in this section with: “Your opponent should be of suitable
station in life; you should play rarely and for short periods, in a suitable
place, for small stakes, and on suitable occasions, or at a holiday
banquet.”

There is nothing “suitable” about Cardano’s gambling. He seems to
have gambled continually, for large stakes, and with all variety of men.
He says in his Autobiography:

From my youth I was immeasurably given to table games; through them I
made the acquaintance of Francisco Sforza, Duke of Milan, and many
friends among the nobles. But through the long years I devoted to them,
nearly forty, it is not easy to tell how many of my possessions I have lost
without compensation. But the dice treated me even worse, because I
instructed my sons in the game and opened my house to gamblers. For
this I have only feeble excuse: poor birth and the fact that I was not inept
at the game.

Then, in a chapter on “Gambling and Dicing”:

In perhaps no respect can I be deemed worthy of praise, but whatever this
praise be, it is certainly less than the blame I deserve for my immoderate
devotion to table games and dice. During many years—for more than
forty years at the chess boards and twenty-five years of gambling—1 have
played not off and on but, as I am ashamed to say, every day. Thereby I
have lost esteem, my worldly goods, and my time. There is no corner of
refuge for my defense, except if someone wishes to speak for me, it should
be said that I did not love the game but abhorred the circumstances which
made me play: lies, injustices and poverty, the insolence of some, the
confusion in my life, the contempt, my sickly constitution and unmerited
idleness, the latter caused by others. An indication of this is the fact that
as soon as I was permitted to live a dignified life, I abandoned it all. It
was not love for the game, nor a taste for luxury, but the odium of my
position which drove me and made me seek its refuge.

In this poignant passage we see the gambling compulsion revealed in
a way that shows how little some things have changed in four hundred
years. Cardano was many things and a gambler on top of it all, and one
wonders how he found the time and energy for everything, while feeling
grateful that he did. For whatever the gambling urge did to his life, it
has left us with a rich picture of a brilliant and possessed man plus a
priceless first treatise on the mathematics of games and gambling.
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A better documented and more specific picture of compulsive gam-
bling can be seen in the life and writings of Fyodor Dostoyevsky
(1821-1881). It is no doubt significant that the life of this great Russian
author rivals that of Cardano in its turbulence and swings of fortune,
but we focus here on the roulette playing episodes experienced and
written about by Dostoyevsky. He first became seriously involved with
roulette in August of 1863 in Wiesbaden, where he wrote: “I won 10,400
francs at first, took them home and shut them up in a bag and intended
to leave Wiesbaden the next day without going back to the tables; but I
got carried away and dropped half my winnings.”*

In a letter to his sister-in-law requesting that his wife be sent some of
the money he had won, he said of the roulette experience:

Please don’t think I am so pleased with myself for not losing that I am
showing off when I say that I know the secret of how not to lose but win,
I really do know the secret; it is terribly silly and simple and consists of
keeping one’s head the whole time, whatever the state of the game, and
not getting excited. That is all, and it makes losing simply impossible and
winning a certainty. But that is not the point; the point is whether, having
grasped the secret, a man knows how to make use of it and is fit to do so.
A man can be as wise as Solomon and have an iron character and still be
carried away ... . Therefore blessed are they who do not play, and regard
the roulette wheel with loathing as the greatest of stupidities.

Dostoyevsky’s lack of respect for the constancy of roulette expecta-
tion (see Chapter 2) is coupled with a belief that keeping his head and
not being carried away are the key to sure winnings. Already we see the
pattern of a man with a system engulfed by the gambling urge. A week
after he sent the letter just quoted, Dostoyevsky wrote from Baden-Baden
to his brother Misha to ask for a return of some of his winnings:

My dear Misha, in Wiesbaden I invented a system, used it in actual play,
and immediately won 10,000 francs. The next morning I got excited,
abandoned the system and immediately lost. In the evening I returned to
the system, observed it strictly, and quickly and without difficulty won
back 3,000 francs. Tell me, after that how could I help being tempted,
how could I fail to believe that I had only to follow my system strictly and
luck would be with me? And I need the money, for myself, for you, for
my wife, for writing my novel. Here tens of thousands are won in jest.
Yes, I went with the idea of helping all of you and extricating myself from
disaster. I believed in my system, too. Besides, when I arrived in Baden-
Baden I went to the tables and in a quarter of an hour won 600 francs.

tQuotes from Dostoyevsky given here are from the Introduction and text of the Jessie
Coulson translation of The Gambler.
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This goaded me on. Suddenly I began to lose, could no longer keep my
head and lost every farthing... . I took my last money and went to play;
with four napoleons I won thirty-five in half an hour. This extraordinary
luck tempted me, I risked the thirty-five and lost them all. After paying
the landlady we were left with six napoleons d’or for the journey. In
Geneva I pawned my watch... .

So it goes in an irregular succession of roulette forays throughout
Europe with recently acquired but sorely needed funds—requests for
more funds, pawned watches, and unpaid hotel bills until 1871 when
somehow Dostoyevsky gives up roulette. It is not surprising that the
state of mind and the events which characterized the earliest of these
experiences should appear in Dostoyevsky’s beautiful short novel The
Gambler, a remarkable profile of one kind of compulsive gambler. It is
worth noting that the actual writing of this novel was itself a gamble,
with free rights to all Dostoyevsky’s past and future writings as the
stake. Indeed, as a result of a variety of family and financial problems
plus considerable procrastination, he found himself on October 4, 1865,
with a deadline of November 1 for presenting his creditor with a work
of at least 160 pages, with the above-mentioned stake as the penalty for
failure. By dictating to a specially hired stenographer (later to become
his second wife) Dostoyevsky completed The Gambler on October 31.

While it is often tempting but usually stretching a point to regard
certain fictional characterizations as clearly autobiographical, there
seems to be ample justification in the case of The Gambler’s narrator
and title character Alexis. Employed and traveling abroad as a tutor to
the family of “the General”, Alexis observes and interacts with the
family as they holiday at Roulettenburg pretending to live in grand
style, while counting on much coveted additional funds from the will of
the very wealthy and ailing “Grandmama”, rumors of whose death are
in the air. Having become passionately and slavishly attached to the
General’s daughter Polina, Alexis is commissioned by her to win at
roulette.

As did Dostoyevsky, Alexis introduces himself to roulette and has
immediate positive reinforcement, leaving the table a dazed but excited
winner. We already see in him several symptoms of the gambling
compulsion: the fatalistic certainty that gambling will shape one’s own
destiny, the loss of control, the sensations of plummeting and soaring.
But Alexis is not made truly aware of the depth of his compulsion until
the arrival of Grandmama who, despite her illness, has herself carried to
Roulettenburg in response to the General’s telegrams of inquiry about
her death. In her we see a portrait of a totally unlikely victim being
energized and swept away by the idea of gambling. (One recalls stories
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in Las Vegas of a 75 year old man or an 8} months pregnant woman
playing the slot machines or the roulette wheel 18 hours a day.)

Grandmama watches the wheel and becomes attached to the 35 to 1
payoff on zero. After a frantic series of escalating bets zero is again
called, leaving Grandmama a triumphant winner. Alexis is possessed by
other feelings:

I was a gambler myself; I realized it at that moment. My arms and legs
were trembling and my head throbbed. It was, of course, a rare happening
for zero to come up three times out of some ten or so; but there was
nothing particularly astonishing about it. I had myself seen zero turn up
three times running two days before, and on that occasion one of the
players, zealously recording all the coups on a piece of paper, had
remarked aloud that no earlier than the previous day that same zero had
come out exactly once in twenty-four hours.

As the perceptive reader might guess, the heavy winnings of her first
outing (would she have escaped had zero stayed away?) lead
Grandmama to gamble away her whole fortune in the next two days.
Alexis refuses to be a part of Grandmama’s downfall after her first day
of losses and independently is compelled to attack the roulette tables in
an attempt to restore the honor and peace of mind of Polina. With just
one hour remaining before closing time he dashes to the tables, pos-
sessed of the necessity of winning heavily and quickly:

Yes, sometimes the wildest notion, the most apparently impossible idea,
takes such a firm hold of the mind that at length it is taken for something
realizable... . More than that: if the idea coincides with a strong and
passionate desire, it may sometimes be accepted as something pre-
destined, inevitable, fore-ordained, something that cannot but exist or
happen! Perhaps there is some reason for this, some combination of
presentiments, some extraordinary exertion of will power, some self-
intoxication of the imagination, or something else—1I don’t know: but on
that evening (which I shall never forget as long as I live) something
miraculous happened to me. Although it is completely capable of
mathematical proof, nevertheless to this day it remains for me a miracu-
lous happening. And why, why, was that certainty so strongly and deeply
rooted in me, and from such a long time ago? I used, indeed, to think of
it, I repeat, not as one event among others that might happen (and
consequently might also not happen), but as something that could not
possibly fail to happen!

Alexis knows, at least describing it in retrospect, that the experience
for which he has been specially singled out by fate is upon him. In a
spiralling sequence of bets he wins a fortune of two hundred thousand
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francs. The money is almost meaningless to Alexis, but the experience
of winning it will never leave him. The reader is made convincingly
aware that it is the act of gambling, the next crucial spin of the wheel,
which will rule Alexis’ life. The story closes with Alexis, having spent
time in debtors prison and as a servant, in a poignant soliloquy as he
weighs the choice between delivering himself to Polina (who is now
wealthy and loves him) in Switzerland or taking his tiny stake and
gambling anew.

The Gambler is much more than a narrative about gambling and
gamblers, but we have focused on that brilliant and revealing aspect of
the book. Hopefully this has given the reader increased feeling for the
psychological and emotional dimension of the gambling phenomenon.
With these “romantic” aspects in mind, we examine in the remaining
chapters some of the more practical and rational aspects of games and
gambling.



CHAPTER 2

Finite Probabilities and Great
Expectations

The probability concept and its origins

It is a significant, amusing and sometimes overlooked fact that
modern-day probability theory, with its high degree of abstraction and
increasingly widespread applicability, owes its origin almost entirely to
questions of gambling. Having already mentioned the life and writing of
Cardano, we now describe two gambling problems which are frequently
cited as the real beginning of the science of probability.

The Chevalier de Méré was a gentleman gambler with considerable
experience and, apparently, a good feel for the odds in dice. Having
made considerable money over the years in betting with even odds on
rolling at least one six in four rolls of a die, de Méré reasoned by a
plausibility argument common in his time that betting on one or more
double sixes in twenty four rolls of two dice should also be profitable.
To his credit he noticed from hard experience that this latter wager was
not doing well for him, and in 1654 he challenged his renowned friend
Blaise Pascal to explain why. In a series of letters between Pascal and
Pierre de Fermat, de Méré’s difficulty was explained, and in the process
the idea of probability, Pascal’s famous triangle, and the ubiquitous
binomial distribution emerged. We leave the computations showing that
de Méré’s double six bet was unwise to Exercise 2.2, but we warm up by
showing now that his single six bet is mathematically advantageous.

Using a standard ploy in the calculus of probabilities, we turn the
question around and ask for the probability of obtaining no sixes in four
rolls. On each of the four rolls the probability of no six is 5/6. The
various rolls are said to be independent if the outcome on each has no
bearing on the outcome of any other roll. We shall soon formalize the
fact that probabilities of independent events can be multiplied to give
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the probability of the occurrence of all the independent events. Since
rolls of the dice are clearly independent, the probability of no six in all

four rolls is
(_5.)(2)(2)(_5.) _5_625
6/ \6/\6/\6 64 1296°
Since we are interested in the opposite result, namely at least one six in
four rolls, we conclude that the probability of this is

625 671
1296  1296°

a probability which exceeds 1/2. Thus the single six bet is a winner.

A second problem solved in the famous Pascal-Fermat correspon-
dence is the “problem of points”, a special case of which can be
paraphrased in modern terminology as follows. Jimmy and Walter are
playing a game which requires a player to score 5 points in order to win
and each player has an equal chance of winning a given point. Jimmy is
leading 4 points to 3 when the game is raided by the police. How shall
Jimmy and Walter divide the stakes on the unfinished game (assuming
the winner was to receive some fixed reward)? Clearly the “right”
answer to this question depends on a variety of moral, sociological, and
mathematical assumptions to be made by the solver, and it might be
instructive to list an array of plausible answers and their rationales. It is
the essence of a good probabilistic solution to a problem that under
natural and clearly explained assumptions the answer is not only
plausible, but demonstrably correct. We illustrate by solving this prob-
lem of points.

Our plan is to find Jimmy’s probability of winning if the game had
been completed and to divide the stakes in accordance with this
probability. It is easy o see that if two more points were played a
winner would have to emerge. Letting J denote a winning point for
Jimmy and W a point for Walter, precisely four different outcomes (J7J,
JW, WJ, and WW) can occur in these last two points. By assumption
these four outcomes are equally likely.

1

Point 8 Point 9 Overall winner

J J J
J w J
w J J
w w w

Therefore by inspecting the above chart, we conclude that Jimmy has a
probability of 3/4 of winning the game, and Walter a probability of
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1/4. Hence the reward for winning should be split in a ratio of 3to 1 in
favor of Jimmy.

The above solution and the simple dice calculation which preceded it
illustrate the clever yet simple nature of many probability calculations.
There are frequently many possible arguments to choose from, but only
those which obey the well-defined rules of probability theory will
consistently yield correct answers. We proceed in what follows to
illustrate some of these calculations, with the hope that they will make
the intuitive idea of probability somewhat clearer. We then present
working definitions for the probability of an event, after which we
formalize some of the rules for calculating with probabilities.

Dice, cards, and probabilities

Consider a pair of dice, each of which is honest, by which we mean
that each of the 6 faces has an equal probability (namely 1/6) of
turning up. If the two dice are rolled simultaneously (or sequentially, for
that matter), there are 36 different equally likely outcomes; they are
listed below. To distinguish between the dice we assume that one is
green and the other white, although the results are valid whatever pair
of honest dice is used.

Green 3

White

1
1

1
2

1
3

1
4

1
5

1
6

2
1

2
2

2
3

212

5

2
6

3
1

33

3

3
5

3
6

414

2

4
3

414

5

4
6

5
1

5
2

5
3

5
4

5
5

5
6

6
1

6
2

6
3

6
4

6
5

6
6

4 2314 1 4

It is important to realize that the appearance of a 6 and a 1 on the
two dice can happen in two distinct ways (green 1, white 6 and green 6,
white 1) and hence is twice as likely as the appearance of two 3’s. With
this idea and the knowledge that each of the 36 basic outcomes has
probability 1/36, we can compute by simple counting the number of
ways and the probability of rolling a given total with two dice. Thus
there are five distinct ways of totaling 6 (as indicated above), and
consequently a probability of 5/36 of obtaining this total. We give a
complete reckoning below.

Total 2 3 4 5 6 7 8 9 10 11 12

Number
of ways

Probability 1/36 | 1/18 | 1/12|1/9|5/36 | 1/6 | 5/36 | 1/9|1/12| 1/18 | 1/36

1 2 3 4 5 6 5 4 3 2 1

There are many other questions we could ask about dice probabilities,
some of which will be addressed in due time. For now we urge the
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reader to understand and acquire some facility with the above counting
arguments, and we move on to some similar elementary calculations
involving playing cards.

A standard poker or bridge deck has 52 cards, 13 of each suit. If we
assume perfect shuffling and honest dealing, then each card in the deck
is equally likely to appear. Thus as long as player A has no specific
knowledge of any cards that have been dealt, his probability of being
dealt a card of a given suit is 13/52 = 1/4, his probability of being
dealt a card of a given rank (like King or Three) is 4/52 = 1/13, and
his probability of being dealt a specific card (like the Queen of Spades)
is 1/52. The reasoning so far is much as in the case of a pair of dice,
where there are 36 equally likely possible outcomes. One distinction,
bothersome to many, is that the above probabilities are not altered by
the fact that some of the cards may have already been dealt to other
players as long as they have not been exposed to player A. The reader is
urged to convince himself of this and of the related fact that it does not
matter from a probability standpoint if the hands in a card game are
dealt (with no dishonest motive!) out of order.

As cards do become exposed to a given player, an important dif-
ference from the dice situation emerges. Cards from the deck are drawn
without replacement, so the fact that a Heart (or even a Club) has
already appeared affects the probability that the second card seen will
be a Heart. This is to be contrasted with successive rolls of a pair of
honest dice, where the appearance of several consecutive double sixes
has no bearing (theories of “hot” and “overdue” dice notwithstanding)
on the probability of a double six on the next roll. Returning to our
deck of cards, we hope the reader will be convinced after some thought
and consideration of equally likely outcomes that:

a) The probability of being dealt a pair in two cards is 3/51.
b) The probability of getting a Jack or a Diamond in a single draw is
16/52.
¢) If 9 cards have been seen by player A, one of which is a Seven, his
probability of the next card being a Seven is 3/43.
d)t The probability of being dealt 5 Spades (a Spade flush) in 5 cards is
13 12 11 10 9

5251750 49 a8~ 0009

which is just a bit less than 1,/2000.

tHint: getting a spade on a first card and getting a spade on a second card given that the
first card is a spade are independent events. The probability of getting spades on the first
two cards is the product (13/52) (12/51) of the probabilities of these independent events.
Continue this argument.
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Roulette, probability, and odds

The previous examples should indicate that the probability of a given
event is a number between 0 and 1 which provides a measure of the
likelihood of its occurrence. In the cases we have seen so far, each event
can be broken down into a number of equally likely elementary events
(36 for a pair of dice and 52 for a full deck of cards). Probabilities of
events can then be determined by careful counting as follows:

Probability of event E =

Number of elementary events in E
Number of possible equally likely elementary events *

There are many probabilistic situations which cannot be broken down
in any meaningful way into equally likely elementary events (such as the
event of a snowfall in San Francisco on Christmas day). An empirical
approach to probability which accords with intuition for some types of
repeatable events proposes

Number of successful occurrences of E
Number of trials

Probability of event F ~

b4

where ~ means “is approximately equal to”, and the approximation
becomes better and better as the number of trials increases.

The reader should note that we have just presented two different
notions of probability. Both are intuitively reasonable and very im-
portant in analyzing and simulating probabilities in games of chance.
The conceptual differences between them are at the heart of much
debate and controversy in the philosophical foundations of probability
theory. Fortunately, the two approaches are linked by a central result in
probability theory which says, among other things, that in the limit as
the number of trials approaches infinity the two definitions coincide.
We do not consider these deep and important ideas further.

Once the probability p(E) of an event E is defined, it is common
practice to refer to the odds for E and the odds against E. These
concepts are related by:

p(E)

Odds for E = ———~—,
1-p(E)

where the odds are expressed (when possible) as a ratio of whole
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numbers. Thus if the probability of E is 1/4, the

1/4 1
odds for E—m =3
and we use the notation 1:3 for these odds (read “one to three”). As
might be expected, the odds against E are the reciprocal of those for
E; so in the example above, the odds against E are 3:1. Working in
the other direction, it is not hard to deduce that, if the odds for event E
are a:b, then

a

p(E)=a+b'

Thus, for instance, if event E has odds 7: 3 against, it has odds 3:7 for
and a probability of 3/(3 +7) =3/10 = .3.

All of this is further complicated (though any enthusiastic gambler
absorbs it with ease) by the practice of telling the bettor the odds
against an event rather than the odds for it. The numerator in the odds
then reflects the amount of profit on a successful wager in the amount
of the denominator. Thus a $2 bet at 7:2 odds (against) will, if
successful, result in a $7 profit (plus the return of the $2 stake).

To clarify the above ideas we apply them to a Las Vegas roulette
wheel (as opposed to the European wheel mentioned in Chapters 1 and
5). The Vegas wheel is divided into 38 congruent (and supposedly
equally likely) sectors numbered 1 through 36, 0, and 00. The numbers 1
through 36 consist of 18 red numbers and 18 black (0 and 00 are green).
Figure 1 shows the betting layout for such a wheel and illustrates some
of the allowable bets. Shading on a number indicates that it corresponds
to a black number on the wheel. Besides the bets indicated directly by
the labels on the betting table, a number of other bets are possible as
indicated by the solid circular chips drawn on the table. From top to
bottom these bets signify:

* a bet on the single number zero (any other single number bet is also
permissible).

* a bet on the adjacent (on the table) numbers 5 or 8 (2 ways to win).

* a bet on the 10, 11, 12 row (3 ways to win).

* a bet on the four numbers 13, 14, 16, 17.

* a bet on the six numbers 28 through 33.

Letting E denote the event that a spin of the wheel results in a 10, 11,
or 12 and using our first notion of probability, we find that the



18

MATHEMATICS OF GAMES AND GAMBLING

° 0 0 O

-._- B B
s N
g § 7 / / 9
Al
: . ./'/ _
g 16 18

25 27

o

afy K
: : /// . * ////
Il I

COLUMN COLUMN COLUMN

Figure 1.

A Las Vegas roulette table.
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probability of E = 3/38. Thus we conclude that the odds for E = 3:35
and the odds against E = 35:3.

In Table 2 we present a more complete list of Las Vegas roulette bets,
true odds against them, and the house odds. The house odds are all of
the form r : 1 where r thus represents the amount a player wins on a §$1
bet. It should be clear from comparing the true odds with the house
odds why casino owners are very fond of the game of roulette (see
Example 4, p. 23 for an elaboration on this theme).

TABLE 2
True and House Odds in Las Vegas Roulette
Type of bet’ True odds House odds
Color (Red or Black) 20:18 1:1
Parity (Even or Odd) 20:18 1:1
18 #’s (1-18 or 19-36) 20:18 1:1
12 #’s (columns or dozens) 26:12 2:1
6 #’s (any 2 rows) 32:6 5:1
4 #’s (any 4 number square) 34:4 8:1
3 #’s (any row) 35:3 11:1
2 #’s (adjacent) 36:2 17:1
Single #’s 37:1 35:1

Compound probabilities: The rules of the game

Having looked at a variety of examples of computing probabilities of
simple events by counting, we now present rules for computing proba-
bilities of compound events. The following terminology will be needed:

The event not A occurs when event A fails to occur in a given
experiment (rolling of dice, dealing of cards, spin of the wheel,
etc.).

The event A or B occurs when, in a given experiment, A occurs or
B occurs (or both). If it is impossible for 4 and B to occur
simultaneously, they are said to be disjoint events.

The event A then B occurs when, in successive experiments which are
independent (the results of the first experiment have no influence
upon the results of the second), 4 occurs in the first experiment
and B in the second. [Example: 4 = top card is spade; B = top
card is red; each experiment deals the top card off a full 52 card
deck.]

We now summarize the basic rules of probability theory (called
axioms in more formal treatments) in Table 3. For an event E we let

TThe symbol # stands for “number”.
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TABLE 3
Probability Rules and Illustrations
Rule Illustration
1. Foranyevent E 0 < # successes < ¥ trials, so
#successes
0<p(E) <1 0<——tnals <1
2. p(impossible event) = 0 p(rolling 13 on two dice) = 0
p(sure thing) = 1 p(getting an Ace when 49 cards are dealt
from a bridge deck) = 1
3. p(not E)=1—p(E) p(at least one 6 in two dice)

= ] — p(no 6 in two dice)
=1 -—25/36 =11/36
4. If A and B are disjoint A= drawaredAce, B = draw a black card
26 28 7
p(AorB)=p(A) +p(B) p(AorB)= +G =5 "N
S. If A and B arceventsin A = drawanAce or King

independent successive B = roll doubles with two dice
experiments,

8 1
P(A then B) = p(4)-p(B) p(A then B) = - ¢ ==

P(E) denote the probability of event E occurring. Likewise p(A then
B) denotes the probability of the occurrence of the compound event 4
then B.

The rules given above are an important part of the mathematics of
games and gambling. Though they are easy to state and to work with in
simple situations, their general application is more difficult and requires
a clear understanding of the underlying events and what can be as-
sumed about them. Indeed, the subtle application of these rules is a
source of frustration as well as delight to many students of elementary
probability theory. We will not rely heavily here on the elusive ability to
reason creatively with probabilities, but we will employ the above rules
in simple situations when called for, and the reader is urged to master
their elementary use. In particular, the concepts of disjoint events and
independent experiments should be understood. The exercises at the end
of this chapter are intended to facilitate this mastery.

Mathematical expectation and its appilcation

Perhaps the most important idea in making rational decisions in the
face of uncertainty (a common task in gambling and many games) is the
concept of mathematical expectation. In this section we will motivate
this concept with a few examples, give it a general formulation, and then
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apply it to a variety of situations. One of our most significant results will
be a negative one—that the fype of bet placed in the Las Vegas version
of roulette has no influence on expected gains or losses. (It will be seen
later that the size of bet placed also has no effect upon a player’s
mathematical expectation per unit wagered.)

Expectation example 1: You have the option to play a game in which
two fair coins are flipped. Payoffs are as follows:

both heads— you win $2
both tails— you win $3
one of each— you lose $4

Should you play and, if you do play, what is your expected gain or loss
in an “average” game?

Solution: In an average play of 4 games you will obtain “both heads”
once, “both tails” once, and “one of each” twice. In this 4 game
sequence your net gain will be 1-32 + 1-83 + 2-(—8$4) = —$3—i.e.,
you will lose $3 over 4 games. Thus you should not play the game, but if
you do you can expect to lose an average of (1/4)-$3 = 75 cents each
time you play. To obtain this 75 cent expectation more directly, observe
that p(both heads) = 1/4, p(both tails) = 1/4 and p(one of each) =
1/2. Hence

$(82) +3(83) +3(—84) = -$.75

is obtained by multiplying each of the probabilities by the correspond-
ing reward or payoff, with losses accompanied by negative signs.

Expectation example 2:  You roll a single die and the house pays you 12
coupons for rolling a six, 8 coupons for rolling an odd number, and
nothing otherwise. How many coupons should you pay the house each
time you roll in order to make the game a fair one?

Solution: Using the probability approach described in Example 1
above, we compute p(six) = 1/6, p(odd) = 1/2, p(other) = 1/3. In a
single play your expectation is $(12) + 3(8) + 3(0) = 6 coupons. You
should therefore pay 6 coupons at the outset of each roll to make
the game fair—that is, an even proposition on the average. If you
incorporate the 6 coupon price per roll into the payoff scheme and re-
compute the expectation, you naturally obtain an expectation of
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+-6 + 1-2 + 3(—6) = 0 coupons, so the expectation in the overall game
is 0, indicating that it is fair (at least in theory) to the player and the
house.

We now state the general procedure for computing mathematical
expectation. Let

E ,E, E,,...,E,

be pairwise disjoint events (no pair can occur simultaneously) with
P1sP2>P3>-+-sPn

their respective probabilities and

T O ST
their respective payoffs.

Then the “expected payoff” or mathematical expectation X in an
experiment in which one of these n events must occur is defined by

X=pin+pr,+psrs+--- +p,r,.

Based on the first two examples and the idea behind this formula, we
make the following observations about the expectation in a probabilistic
experiment. The expectation need not be equal to any of the possible
payoffs, but represents an appropriately weighted sum of the payoffs
with the probabilities providing the weights. The sign of a given payoff
reflects whether it is a gain or a loss, and care should be taken to make
sure that losses contribute negative terms in the computation of X.
Finally, a game or experiment is defined to be fair if its overall
expectation is 0. We caution the reader again that the events
E, E,,...,E, must be pairwise disjoint (no pair of events can occur
simultaneously) and must exhaust the set of possible outcomes in order
for the above expectation formula to be correct.

We conclude this chapter with several somewhat more realistic and
significant applications of the expectation idea, which will be a re-
curring theme throughout the book.

Expectation example 3: You are thinking of attending a late January
convention whose nonrefundable registration fee is $15 if paid before
January 1 (preregistration) and $20 if paid later or at the convention.
You subjectively estimate on December 28 (last mailing date to insure
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arrival before January 1) that your probability of being able to attend
the convention is p. For which values of p should you preregister and
for which should you wish to pay at the door?

Solution: X(preregister) = (1)(—15) (you pay $15 in any event).
X (wait) = p(—20) + (1 — p)-0 (you pay $20 only if you attend).
These two expectations will be equal when —15 = —20 p or p = 3/4.
Thus, for p > 3/4 you should preregister; for p < 3/4 you should
wait; for p = 3 /4 take your pick.

Expectation example 4: (The futility of roulette) Suppose a $1 bet is
made on red with a Las Vegas roulette wheel. Then

X(red) = 35 (81) + 39 (~$1) = = =($1) = ~5.26 cents.
Similarly, if the bet is on “1st third”, then
X(ist third) = 5= (82) + 20 (~$1) = = = (81) = —5.26 cents.
If the bet is on a single number, then
X(single #) = —= (835) + L (=$1) = — = ($1) = —5.26 cents.
38 38 38

In fact (see Exercise 2.7) any bet or combination of bets can similarly be
shown to have the same negative expectation—you will lose an average
of 5.26 cents for every dollar wagered, regardless of how it is wagered.

Expectation example 5: (Pascal’s wager) We somewhat facetiously
analyze Blaise Pascal’s philosophical argument (1660) that it is probabil-
istically prudent to believe in God. Let p = the probability that God
exists and let us make the reasonable assumption that, whatever its
value, p > 0 (the existence of God is not an impossible event). Each
individual must make the decision either to believe or not believe in the
deity. Reasoning that belief in a nonexistent God has some negative
payoff (say —z) due to wasted time, energy, loyalty, etc. (in Pascal’s
translated words, the believer will “not enjoy noxious pleasures, glory,
and good living”™), but that nonbelief in the case where God exists has



2

MATHEMATICS OF GAMES AND GAMBLING

an infinite negative payoff (eternal damnation), we obtain the following
table of payoffs, where x and y are some positive but finite payoffs:

existence nonexistence

belief x -z
nonbelief — 00 y

The expectations in cases of belief and nonbelief are

X(belief) = p-x + (1 — p)(—2);
X(nonbelief) = p(—o0) + (1 —p)y = —o0.

We conclude that, regardless of how small the (assumed) positive
probability of God’s existence may be, the expectation is higher (per-
haps less negative) if we choose to believe.! The reader may take this
example as seriously as religion, faith in numbers, and sense of humor
allow.
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Exercises

Compute the probability of getting at least 1 six in 3 rolls of an honest
die. Hint: first compute the probability of no six in 3 rolls. Then expose
the flaw in the following reasoning:

The probability of a six in any one roll is 1/6.

Since we have 3 rolls, p(at least 1 six) == 3- 1= 1, an even chance.

Solve Chevalier de Méré’s problem of determining the probability of
obtaining one or more double sixes in 24 rolls of a pair of dice. Hint:
(35/36)% = .5086. Conclude that de Méré was wise and sensitive to
doubt the wisdom of an even-odds bet on this double six result.

Recall the “problem of points™ treated early in the chapter, and explain
how the stakes should be split in a 5 point game if Walter has 3 points
and Jimmy 2 points when play is stopped.

Calculate the number of distinct, equally likely elementary events when 3
dice are rolled. Then compute p(A), p(B), and p(C) where A = total of
3or4; B=total of 5; C = total of 6 or more. Finally, compute the odds
for and odds against each of the three events A4, B, and C.

If you are dealt 3,4,5,7 as the first four cards of a poker hand, what is

tAn examination of Pascal’s Pensées shows that he supposes the entry for nonbelief /ex-
istence to be finite while requiring the belief/existence entry to be positively infinite
(eternal bliss). The author slightly prefers the version given here.
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the probability of getting a 6 as the fifth card? If the fifth card is nor a 6,
compute the probability of replacing it (on a 1 card draw without
replacement) with a new fifth card which is a 6. Obtain from this the
general probability of drawing one card to fill an inside straight.

Compute the probability of 2 or more dice showing the same number of
spots when 4 dice are rolled. Hint: first compute the probability of all 4
dice being different by looking at 4 successive independent trials.

Consider a Las Vegas roulette wheel with a bet of $5 on black and a bet
of $2 on the specific group of 4 pictured in Figure 1 (13, 14, 16, 17). What
is the bettor’s expectation on this combined bet? Conclude, as suggested
in the text, that the bettor’s expected loss is 5.26 cents for every dollar bet.

A European roulette wheel has 37 sectors including a zero but no double

zero. Furthermore if the zero comes up, any wager on even money bets

(red, odd, 2nd 18, etc.) remains for one more spin. If the desired even

money event occurs on this next spin, the original wager is returned (no

gain or loss). Otherwise house odds are as listed in Table 2.

a) Compute the expectation of a $1 bet on red with such a wheel.

b) Compute the expectation of other types of $1 bets.

¢) Conclude that European roulette has a measure of “skill” not present
in Las Vegas roulette.

A coin is flipped and then a single die is rolled. Payoffs in this successive
game are as indicated below. What is the expectation of this game, and
how much should be paid or charged to a player to make it a fair game?

lor2 3,4,0r5 6
H 12 -10 0
T -6 9 -6

A mythical slot machine has three wheels, each containing ten symbols.
On each wheel there is 1 JACKPOT symbol and 9 other non-paying
symbols. You put 1 silver dollar in the slot and the payoffs are as follows:
3 JACKPOT symbols—$487 in silver is returned (including your $1).

2 JACKPOT symbols—$10 in silver is returned.

1 JACKPOT symbol—$! in silver is returned (you get your wager back).
Define what it would mean to say that this slot machine is fair and then
show that it is indeed a fair one-armed bandit!

In backgammon a player’s count on a given roll of two dice is determined
as follows: If doubles are rolled the count is twice the total on the two
dice (thus double 5 would give a count of 20). Otherwise the count is
simply the total on the two dice. Compute the “expected” count on a
backgammon roll. Your answer should be 8¢, but it is the method that is
of interest here.
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2.12 (St. Petersburg paradox) You flip a fair coin as many times as you can
until you obtain a tail at which time you stop. The payoff to you is based
upon the number of initial “heads” you get before you are stopped by a
tail according to the table below. What is your expectation for this game?
Discuss your answer; ask what it means and whether it is realistic.

#of“heads” | 0 | 1 [ 2|3 ] ... | n |
payoff
(in dollars) 1 2 4 | 8 2"




CHAPTER 3

Backgammon and Other Dice Diversions

Backgammon oversimplified

There are many good books on the rules and strategy of backgammon
(see, for instance, Jacoby and Crawford’s The Backgammon Book), and
we do not attempt to duplicate these here. We assume the reader is
either already familiar with the basic rules or else will leave us at this
point to learn the game from a relative or friend. The rules and
mechanics of backgammon are straightforward, but there is seemingly
endless variety in the play of this delightful combination of skill and
chance. We are primarily interested in those aspects of everyday back-
gammon play which can be analyzed by means of the elementary
probability and expectation techniques developed in the last chapter.
Specifically, we shall consider probabilities of hitting blots (isolated
opponents) in various situations, probabilities of entering from the bar
and of bearing off (removing all men from the board to complete the
game), and the beautiful mathematics of the doubling cube. Further-
more, we shall pursue the application of some of this backgammon
arithmetic in improving certain aspects of overall play. Figure 2 pro-
vides a representation of the backgammon board and establishes some
notation. We shall always assume that white is sitting in the “south”
position and moving his men counterclockwise. The setup shown indi-
cates how men are positioned at the start of a game.

Before considering specific situations, we present a simplified break-
down of backgammon into its opening, offensive, defensive, and closing
stages to convince the reader that there is much more to the game than
quickly working one’s way around the board. We leave details of the
crucial doubling cube to a later section. The opening moves by each
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Figure 2 Schematic backgammon board and its reference points.

player have been given extensive treatment based primarily upon com-
mon sense and experience. Indeed it is virtually impossible to analyze
mathematically the choices for given opening rolls, and we urge the
reader to adopt one of the standard sets of recommendations for
opening moves and responses (even here there is disagreement and some
controversy). Table 4 lists the author’s favorite opening moves, though
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TABLE 4

Some Reasonable Opening Moves

DOUBLES— Assumes opponent went first and move is not blocked

Roll Recommended move

6-6 Capture both 7 points

5-5 Move two men from opponent’s 12 point to your 3 point

44 Capture your 9 point and opponent’s 5 point

3.3 Capture your 7 (alias bar) point

22 Capture opponent’s 5 point

1-1 Capture your 7 (bar) point and your 5 point
NONDOUBLES—Assumes move is not blocked

Roll Recommended move

6-5 or 6-4 Move one back man (opponent’s 1 point) the full count

6-3 or 6-2 Move back man to opponent’s 7 point and advance man from 12 point
6-1 Capture your 7 (bar) point

5-4 or 5-2 Move two men from opponent’s 12 point

5-3 Capture your 3 point

5-1 Advance one back man to opponent’s 7 point

4.3 Move two men from opponent’s 12 point

4-2 Capture your 4 point

4-1 Advance a man to your 9 point and a man to your 5 point
32 Move two men from opponent’s 12 point

3-1 Capture your 5 point

2-1 Advance a man to your 11 point and a man to your § point

these vary depending upon mood and opponent’s positioning (assuming
opponent went first). Already at this early stage the player may feel the
conflict between cautious, uninspired column-preserving moves and
adventurous, blot-creating and point-building moves.

As the game develops each player concentrates, in varying degrees,
upon

(a) moving his men safely and rapidly around to his inner table (the
running game),

(b) blocking up his table with adjacent points (paired men) to prevent
the opponent from escaping (the blocking game);

(¢) holding two or preferably more men in the opponent’s inner board
in the hope of hitting the opponent at the right time (the back
game).

Strategy (a) is the most straightforward and, played to the limit, often
turns the game into one of pure dice-throwing and prayer. Successful
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employment of strategy (b) requires forethought, some chance-taking,
awareness of the opponent’s position, sound use of probabilities, and
friendly dice. The back game strategy (c) tends to be a last (but most
exciting and by no means hopeless) resort, to be employed when the
opponent is well ahead (usually through more successful use of strate-
gies (a) and (b)). A good player must be adept at knowing how and
when to move among these three facets of the game, and this requires
understanding of the odds on points being made, blots being hit, and
men coming off the bar in various situations.

Finally, most good games of backgammon not terminated by the
doubling cube require procedures for bearing off efficiently, and this
too requires the ability to think and to count cleverly and quickly. In the
following three sections we shall describe some of the elementary
mathematics which justifies certain moves of skilled players (most of
whom have somehow bypassed the mathematics with “game sense™). It
is important to point out that the situations we shall consider will often
be oversimplified and even unlikely. However, what we stress is the
reasoning, because it, rather than the particular cases studied, will carry
over to other situations. A systematic mathematical approach to the
overall game is scarcely possible. As in chess, the number of choices and
their ramifications at almost any stage is too large for human or
machine analysis.

Rolling spots and hitting blots

The section of Chapter 2 on dice probabilities will be useful here, but
it must be augmented slightly to take into account the special nature of
rolling doubles in backgammon. Thus, if you are interested in moving a
man to a position eight points away, recall that there are 5 ways for the
two dice to total eight. Remembering also that double 2 will allow for a
count of eight, we see that the probability of being able to move your
man the desired eight points is 6/36 or 1/6 (assuming that the inter-
mediate points are not blocked). Similarly, if you wish to move a
specific man six points away, note that there are

5 ways to total six on two dice
1 way through double 2
11 ways involving a six on at least one of the dice.

Checking that these events are disjoint, we see that

. . 17
p(moving one man six points) = 36
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almost an even chance. It should be clear that this kind of reasoning is
vital in backgammon when one is faced with a choice of whether and
where to leave a blot, and whether to play for hitting an opponent on
the next turn.

Since hitting blots is so important, we include a table (again assuming
no opposing points intervene) of probabilities for hitting a blot with a
single man at varying distances. The construction of the full table
proceeds just as in our computation above of the eight points away
(p = 1/6) and six points away (p = 17/36) cases.

TABLE 5
Probabilities of Hitting a Single Blot with a Single Man
# of points away # of ways to hit Probability of hitting

1 11 11/36

2 12 12/36

3 14 14/36

4 15 15/36

5 15 15/36

6 17 17/36

7 6 6/36

8 6 6/36

9 5 5/36

10 3 3/36

11 2 2/36

12 3 3/36

15, 16, 18, 20, or 24 1 for each 1/36 for each

One conclusion from this table is fairly evident and is put to use by
all competent backgammon players:

If you must leave a blot which you do not want hit, leave it at least 7 points
Jrom the threatening man if possible, in which case the farther the better
(with 11 vs. 12 as the lone exception). If you must leave the blot within 6
points, move it as close as possible to the threat man.

We hasten to point out that this rule, like most, has some exceptions.
Thus it is good practice if you must leave a blot to leave it where, should
it escape being hit, it will do you the most good (potentially) on your
next turn. It is also possible to use Table 5 to compute probabilities of
hitting one of two blots and probabilities of a blot being hit by one of
two men, etc. For instance, if an opponent leaves blots at distances two
and seven from your man, there are 12 ways to hit the “two” blot and 6
ways to hit the “seven” blot. Since 2 of these 18 ways are counted twice
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(2-5 and 5-2), there are 16 distinct ways to hit one or more of these
blots. Note that we must not add the original probabilities (12/36 and
6/36) since the events are not disjoint, so we remove the overlap first
(from either event) and then add to obtain an overall probability of
16/36 of making a hit. See Exercise 3.1 for more of this reasoning, but
be prepared during a game to count from scratch rather than relying on
excessive memorization of tables.

Entering and bearing off

An important part of the decision of whether and how exposed to
leave a blot relates to the difficulty of entering (should disaster strike)
from the bar. Thus the hitting of your blot in the very early game (first
few moves) may hurt you in terms of overall count, but should not leave
you unable to roll what is needed to enter quickly. As your opponent
fills more points in his inner table this changes dramatically, as should
your willingness to leave blots. The reader should have little trouble
following the reasoning behind Table 6. For example, if 4 points are
filled, then each die provides a probability of 4/6 of nor entering. In
independent successive rolls (probability rule 5),

p(not entering) = 4.4_16 and thus p(entering) = 1 — L. 29

36 36
Again the reader can imagine and will encounter other situations such
as trying to enter two men from the bar or trying to hit a blot in a
partially filled inner table of the opponent. We leave these questions for
the exercises.

TABLE 6
Entering from the Bar on a Given Roll
# of opponent’s points Probability of entering
in inner table on next roll

0 1

1 35/36

2 32/36 =8/9
3 27/36 = 3/4
4 20/36 =5/9
5 11/36

6 0

The philosophy behind bearing off in a simple race to finish (no
opponents on the bar, etc.) is, with some exceptions, straightforward.
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Men should be brought into your inner table as economically as
possible, a procedure which frequently loads up your six point heavily.
Once all men are in the inner table, take as many men off as possible on
each roll. The fun begins when relatively few men are left and a roll is
made allowing men to be moved closer but not taken off. We illustrate
with two examples, assuming in both that you want to maximize your
chance of winning on the following roll.

BAR
HOME

o] 10

Backgammon example 1. Your inner table is as indicated above, and
you roll 3 and 2. Do you move to the 4 and 1 points or to the 3 and 2
points? If you move to 4 and 1 points only 7 rolls will prevent a win on
the next turn (3-1,1-3,3-2,2-3,2-1,1-2,1-1). If you move to 3 and 2
points there are 11 rolls which will hurt (any roll including a “1”).
Hence moving to the 4 and 1 points is the clearly superior play.

HOME

BAR

O
ojol o

Backgammon example 2. 'With your inner table as indicated above you
roll 2 and 1. What do you do? The best play for finishing on the next
turn is to move your 6 and 5 point men to the 4 point. Then you will
finish with 4-4, 5-5, or 6-6. Any other move will require at least double 5
to finish. Note this is an exception to the principle of always removing a
man if possible.

Questions involving bearing off against a back game or when an
opponent is on the bar become more involved, but as always there is no
substitute for careful counting when feasible and inspired thinking
when possible (see Exercise 3.4).

The doubling cube

The incorporation of the doubling cube (in conjunction with a small
stake) into a game of backgammon converts it from what might be a
pleasant pastime to a dynamic, action-filled and fast-moving contest
beautifully suited to gambling and strategic analysis. It is no coinci-
dence that analysis of the doubling cube also involves some of the most
elegant and applicable mathematics we will encounter. To summarize
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briefly the mechanics of the cube, each player has the initial option to
double the stake of the game before one of his rolls. When a player
doubles the stake, the cube is offered to the opposing player, who may
either concede, paying out the stake existing before the double; or
accept, controlling the cube for a possible subsequent double should his
position call for this at some later point. Successive doubles alternate,
with only the player controlling the cube having the option to double
next.

It is important to remember that control of the doubling cube
provides a dual advantage. First, you have the option to double if you
wish. In addition, the opponent is unable to double and thus force you
to concede when you are well behind. This advantage should not be
used as a justification for accepting doubles simply to control the cube,
though it will be used to suggest that you should not double the cube
away with only a slight advantage.

We now consider when you should accept a double and when you
should double. To deal with this mathematically we assume the current
stake of the game is s units (the value of s will turn out to be
immaterial to the final conclusions). We further assume that at the time
a decision (either for accepting or doubling) is to be made

P = your estimated probability of winning the game,

1 — p = your estimated probability of losing the game.

Clearly, exact determination of p is next to impossible except in very
simple end game=situations, though there are useful rules of thumb for
estimating p (see Jacoby and Crawford, pp. 106-108). We suppose,
however, that an experienced player can estimate his probability of
winning at any stage with reasonable accuracy.

Suppose you are doubled under the conditions assumed above. Then

X(refuse) = —s (you lose s units)
X(accept) =p(2s) + (1 —p)}(—2s) =s@dp —2) (the payoff is
up to 2s units).

You should accept when X(accept) > X(refuse) or when s(4p — 2) >
—s. Dividing both sides of this inequality by the positive common
factor s, you should accept when 4p — 2 > —1. Thus, accept a double
when p > 1/4. Similar reasoning indicates that you should refuse when
p < 1/4 and follow your whim when p = 1/4. A more delicate analy-
sis taking into account the fact that accepting gives you control of the
cube might show, in certain cases, that doubles could be accepted with
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mathematical justification for values of p somewhat less than 1/4. On
the other hand, if possibilities of being “gammoned” or “backgam-
moned” exist, you might want p to be somewhat greater than 1/4
before accepting.

Consider the opposite question of when a double should be given to
your opponent. Under what circumstances do you want him to accept
your double? Working again with expectations, with p and s as
above,

X(opponent accepts) = p(2s) + (1 — p)(—2s) = s(4p — 2);

X(opponent refuses) = s.

Equating these expectations and solving for p, we obtain p = 3/4 as
the probability at which you do not care whether or not your double is
accepted. If p < 3/4 you prefer a concession, and if p > 3/4 you
hope your foolish opponent accepts the double. Now consider a third
expectation, namely

X(no double) = p(s) + (1 —p)(—s) =s2p — 1).

Since X(no double) = X(opponent accepts) precisely when p =1/2
(check this), we make the following preliminary conclusions: Whenever
p > 1/2, doubling seems a good idea; and if p > 3/4, you should hope
the double is accepted. When p < 1/2 doubling is a bad proposition
[X(no double) > X(opponent accepts)] unless your opponent is timid
enough to refuse such doubles [ X(opponent refuses) > X(no double)).
After all this hard work, we remind ourselves that doubling gives up
control of the cube, a fact not easily fitted into the mathematical
analysis. But intuitively, it suggests that doubles should not be made
(except in end game situations) unless p is safely greater than 1/2 (say
p » 2/3). If neither player has doubled, your double is not giving the
opponent much more control than he already had, so initial doubles
might be made with p shading even closer to 1/2 from above.! Finally,
we caution that doubling when you have a good chance at a gammon
should be avoided even if p is well over 1/2 (paradoxically, in these
cases the larger the p value, the less you should be inclined to double).

tKeeler and Spencer, in their paper “Optimal Doubling in Backgammon” [Operations
Research 23, 1063-1071 (1975)], give a detailed mathematical analysis of doubling.
Ignoring gammons and backgammons, they indicate that optimal strategy calls for a
double when p > 4/5 in the early game, with p dropping towards 1/2 as the end game is
approached. They also suggest accepting early doubles whenever p > 1/5.
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We conclude our backgammon discussion with several more exam-
ples illustrating the ideas we have developed.

Opponent inner table
®

HOME

BAR
]
T
1
1
|
|

O O
Your inner table

Backgammon example 3. 1t is your roll with your (white) inner table
and your opponent’s as shown above. Should you double? You have 17
losing rolls—11 with “1” on either die, 3-2, 2-3, 4-2, 2-4, and 4-3, 3-4.
Hence your probability p of winning is p = 19/36. You are not
worried about losing control of the cube (if you fail on this turn you
lose anyway!). Hence you should double since p > 1/2, and opponent
should accept since 1 — p > 1/4 (recall that 1 — p is opponent’s prob-
ability of winning).

Opponent inner table
[

2 -+ -

O O
Your inner table

HOME

Backgammon example 4. Again it is your turn (white) with the board
as shown above and you in control of the cube. Now should you
double? Three disjoint events can take place:

A = you win on your first roll

B = opponent wins on his first roll (which requires not A to happen
first)

C = you win on your second roll (which requires not A and then not B
to happen first).

(We ignore the extremely unlikely event that you will roll 2-1, opponent
will not finish, and then you roll 2-1 again—you would double after
opponent failed and be in situation C.)
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p(4) = as in example 3.
17 . .
p(B)=— = (only 9 rolls will prevent opponent from finishing).
17 1
p(C)=3"7-

As the size of the stake is immaterial to our analysis, we assume a stake
of 1 unit. Then,

17 3 17 1 21
X(no double) = 36(l) % 4( 36-Z(l)=7—2,

X(double, accept redouble) = 19( 2) + ;Z Z( —4) + ;Z . %(4) = %

[Note that the payoffs of 4 result from the fact that opponent will
redouble].

19 17 8

X(double, refuse redouble) = 36 )+ 3 6( 2) = =75 -
Comparing these three expectations we see that the best course is to
hold off on the double because of the threat of a redouble, illustrating
the value of controlling the cube. Note the paradoxical fact that you
should double in example 3 with the opponent on his one point, but
refrain in example 4 despite the fact that the opponent is farther back
(on his six point).

Opponent inner table
I

w

% - &

& ol 2
(e}
I lolo

Your inner table

Backgammon example 5. You have the cube and the dice as white with
the board shown above. What should you do? Your probability of
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winning the game is at least 31/36 since you will surely be done in 2
turns and opponent has only 5 rolls (any double except 1-1) to prevent
you from getting a second turn. (Since you may roll doubles yourself,
things are even better than this lower estimate. A complete calculation
shows that p(you win) =1 — g—;- =.) You should certainly double, in
which case opponent (with his probability of winning less than 1/4)
should resign. Note that a failure to double here gives the opponent a
chance to win a game that your double should guarantee for yourself.

As is often the case with a mathematically based analysis of a rich
and dynamic game situation, crucial psychological considerations have
been unjustifiably ignored. In the case of the doubling cube, an oppo-
nent should be tested with a variety of doubles, including a few
mathematically unsound ones. Indeed your opponent’s estimate of
1 — p (his probability of winning) may tend to be unduly conservative,
in which case a forceful doubling policy is called for. Similar considera-
tions involving acceptance of doubles, rationally employed, can add a
psychological dimension to your game which can, in certain situations,
be far more effective and profitable than unwavering mathematical
optimization.

Craps

One of the mainstays of American casino gambling, craps, isa game
with a simple set of basic rules and a dizzying variety of options
involving bets and their resultant odds. Craps is also a common street
(or locker room, back alley, etc.) gambling game in which players bet
against each other rather than against a monolithic “house”. We shall
first describe and analyze street craps and then consider the delicate
alterations which the gambling houses make in offering casino craps to
their customers.

In street craps the shooter rolls two dice. If a total of 7 or 11 comes
up on a beginning roll (an event called a natural), the shooter and those
betting with him (called pass bettors) win the amount bet. If a 2, 3, or 12
total (called a craps) shows on the beginning roll, the pass bettors lose
and the competing don’t pass bettors win. Any of the remaining six
totals (4,5,6,8,9,10) on the beginning roll becomes the pass bettors’
point. In this case, the shooter continues to roll the dice and if the point
comes up before a seven, the pass bettors win. Otherwise (i.e., a seven
comes up before the point), the don’t pass bettors win. In this “friendly”
craps game any bet made by a player must be “covered” by a player
betting on the opposite result. Rolling and betting start again after each
pass or don’t pass, with the shooter keeping the dice as long as he makes
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his point, rolls naturals, or rolls craps, and passing the dice upon losing
his point.

To increase the action there are all sorts of side bets made at
appropriate odds. Before considering these options we analyze the
expectation on a simple pass or don’t pass bet. The probabilities of
naturals and craps can be computed directly by counting as done
previously. Probabilities for making and losing points involve a small
extra step; we illustrate as follows: Suppose five is the point to be made
(it came up on a starting roll). There are 4 ways to total five (pass) and 6
ways to total seven (don’t pass). Thus with five as the point, p(pass) =
4/10, the odds being 6:4 or 3:2 against. The probability of rolling 5
(4/36) and then passing is (4/36)-(4/10) ~ .0444. Similarly p(point of 5
then don’t pass) = (4/36)-(6/10) ~ .0667. By using this reasoning we
can compute in Table 7 the probabilities of the various disjoint events
making up the dice rolling experiment known as craps.

TABLE 7
Events and Probabilities in a Play of Street Craps
P (Initial roll p(Initial roll then
Initial roll p(Initial roll) then pass) don’t pass)
natural 8 8
craps 4 - 4 L
2,3, or 12) 36 0 = .0000 36 ~ 1111
3 3 3 3 6
4 4 4
5 36 R-]—Ozw 356’?»\;.0667
5 5 5
6 R R-ﬁz.%ﬂ '5.;6"ﬁ~-0757
5 5 5 6
8 E ?46'14—1N.0631 ¥'g~-0757
4
9 36 %-Ez.w gg’m~-0667
3 3 3 3 6
Totals 1 = .4928 = 5071

The totals in the last two columns essentially add to 1 (the dis-
crepancy results from roundoff errors) and indicate that the don’t pass
bet has a slight edge. Indeed, one will see “street wise” players betting
don’t pass consistently except when they are shooting, at which time
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matters of personal involvement and force of will override these delicate
mathematical considerations. To see precisely what to expect, we as-
sume a $1 bet and use the expectation concept.

X(pass) ~ .4928(1) + .5071(—1) = —.0143 [ —1.4 cents]
X(don’t pass) ~ .4928(—1) + .5071(1) = .0143 [ +1.4 cents]

The concept of a positive expectation for the bettor is of course
intolerable for a casino, and the means of converting street craps into a
viable casino game is interesting. The rules for pass betting are identical.
For don’t pass betting an initial craps roll of double six (or in some
places double one) still loses for the pass bettor, but the don’t pass
bettor neither wins nor loses. (A few casinos use “total of 3” as the no
result event—see Exercise 3.9). The probability of an initial roll of
double six is 1/36. Under street rules this outcome contributes a term of
(1/36)-1 to the expectation of a don’t pass bettor. But under casino
rules it contributes a term of (1/36)-0 = 0 to his expectation. Therefore,
the positive expectation of .0143 for the don’t pass bettor on the street is
decreased by (1/36) ~ .0278 in the casino. Consequently, for casino
craps we have

X(don’t pass) ~ .0143 — .0278 = —.0135 [ —1.4 cents].

This strategem by the casinos enables them to field both pass and don’t
pass bets with similar mathematical confidence. Indeed the house ex-
pects to win about 1.4 cents on every dollar wagered on either bet. The
fact that this house edge of 1.4 percent is less than the edge in roulette by
a factor of 4 may partially explain the relative popularity of craps
among the “smart” American casino gamblers.

We will not discuss all the betting options available in craps, though
Figure 3 should suggest the richness of choice. We consider a few
mathematical aspects of these options in the exercises and treat here the
option of most interest to the expectation-conscious bettor, that of free
odds. If the initial roll is neither a natural nor a craps, so that a point is
established, a bettor may “back up” his bet with up to an equal
additional amount at true mathematical odds. Thus a pass bettor who
bets $10 and sees a point of 4 established is in a disadvantageous
position, having only 3 chances out of 9 to win at this point. He may,
however, stake an additional $10 on 4 to appear before 7 at the true 2: 1
odds against, thereby improving his per dollar expectation in his current
unfavorable position. If he takes these free odds and the 4 point is
made, he will win $30 overall, while the rolling of a now dreaded 7 will
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lose him $20 overall rather than his initial $10. Similarly a don’t pass bet
of $6 and a point of 8 can be backed up with a $6 bet at 5:6 odds
against that the point will not be made. The reader should check that
$12 is lost if the point is made and $11 is won otherwise.

Let us analyze the optimal craps strategy of betting $10 on pass and
taking maximal free odds whenever possible (actually a similar strategy
with a $6 bet on don’t pass would be slightly better—why?). Since the
house will not pay out fractions of some minimal stake, such as $1, it is
necessary to make bets in multiples of $10 to receive full payment on
this free odds strategy. Using Table 7, the various payoffs on free odds,
and the ubiquitous expectation formula, for this strategy we have on an
initial $10 bet

natural craps passon4 or 10  don’t pass on 4 or 10
e e ! m— ! e— ! e,
X(pass ) & 2222(10) + “1111(-10) + 0556(30) + .1111(—20)
etc.

e —
+0889(25) + .1334(—20) +.1262(22) + .1514(—20).

It turns out, though our roundoff errors obscure this fact, that this free
odds value of X( pass ) and the no odds value on a $10 bet are identically equal
to —14/99 (s —.1414). If we realize, however, that the free odds expectation
results from increased betting, we see it as a better percentage bet. Specifically,
the average amount wagered under our free odds, pass bet strategy is (1/3)(10)
+ (2/3)(20) & 16.67 dollars (1/3 of the time the initial roll decides the bettor’s
fate and 2/3 of the time he backs up his point). Thus this strategy has an
expectation per dollar wagered of —.1414/16.67 ~ —.0085[—.85 cents/dollar]
and the house edge has been cut below 1 percent. Not only will much of the
“smart” money in casino gambling be found around the craps tables, but the
smartest of the smart money will be taking advantage of free odds. Table 8
lists the various types of bets available in craps and the edge each provides
to the house.

Chuck-a-Luck

The game of chuck-a-luck is nearly an ideal carnival fixture. The
apparatus is simple, the rules are easy to understand, the odds seem
attractive to the bettor, and the carnival makes money steadily. In this
brief section we analyze the appeal and expectation of chuck-a-luck.
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TABLE 8
Odds and House Edge on Craps Bets (Best to Worst)
Probability
Type of bet of win House odds House edge
Pass/Don’t Pass (plus free odds) — — 9%
Pass/Don’t Pass (no free odds) ~ 493 1:1 1.4%
. 16
Field %~ 444 — 5.6%
Big 6/Big 8 -ls—lz 455 1:1 9.1%
Double 3/Double 4 M 9 9.1%
Double 2/Double 5 g~ 7:1 11.1%
Craps %z 1) 7:1 11.1%
Double 1/Double 6 '31_6 ~ .028 29:1 16.7%
1-2/5-6 -]% =~ 056 14:1 16.7%
Seven % ~ .167 4:1 16.7%

The apparatus consists of three dice (usually large ones in a wire
cage). The betting surface consists simply of regions containing the
numbers 1 through 6. The bettor places his stake in a region containing
a particular number, and the three dice are rolled once. The bettor wins
the amount of the stake for each appearance of the number bet upon. If
the number does not appear, the stake is lost. For example, if $1 is
placed on five and the spots 5-3-5 come up the bettor wins $2 (collecting
$3 including the original stake). Similarly 4-4-1 would lose $1, 6-2-5
would win $1, and 5-5-5 would win $3.

This game seems attractive, even to some who think intuitively about
probabilities, because one might reason as follows: There are three dice
and six possible faces on each die, so any given number should have a
3/6 or an even chance of appearing, ensuring at least a fair game.
Furthermore, the possibility of doubles and triples yields extra money {0
be won. This is a nice example of plausible but false probabilistic
reasoning (recall Exercise 2.1 and the need for disjoint events in rule 4
for probabilities). As always, a careful analysis must be made of the
situation.
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There are 6% = 216 equally likely elementary events in rolling three
fair dice. Exactly one of these pays triple, so p(triple win) = 1/216. To
count the number of elementary events leading to a double win, assume
for specificity that a bet is placed on 4. The desired elementary events
have the form 4-4-x, 4-x-4, or x-4-4 where x in each case denotes “not
4” and has 5 ways of occurring on a particular die. Thus there are
5+ 54+5=15 ways to roll exactly two 4’s. Similarly, single win
elementary events have the form 4-x-y, x-4-y, or x-y-4 where both x
and y represent “not 4.” Each of these 3 single win methods can
happen in 52 = 25 ways (x and y each have 5 possibilities and vary
independently). Subtracting 1 + 15 + 75 from 216 to obtain 125, we are
ready to compute an expectation—as usual on a $1 bet.

1
216

15 125

X(chuck-a-luck) = 3) + 216 2+ 27T56(1) + T6(_ 1)

_(108-125) 17 _ _
=S = 3¢ ~ — 0787 [-7.9 cents].

The carnival has an expectation of 7.9 cents profit on every dollar
bet, better than roulette by a factor of about 1.5. The appearance of the
figure 108 (216 + 2) in our calculation above helps to explain the
intuitive appeal of chuck-a-luck to the bettor. In 216 rolls of the three
dice the bettor will win, on the average, 108 dollars (on 91 of the rolls)
while losing 125 dollars on the other 125 rolls. It is no mystery that
carnivals cherish this aptly named game.

Exercises

(Exercises 1 to 6 refer to Backgammon)

3.1 a) You leave two blots which are 4 points and 6 points from one of your
opponent’s men (no other men in sight). What is the opponent’s probabil-
ity of being able to hit at least one of your men on the next roll?

b) Suppose conditions are as above except that you have also established
a point 3 points away from your opponent’s man. Now what is the
probability of one or more of your blots being hit on the next roll?

3.2 a) Suppose you have two men on the bar and two points are held by the
opponent in his inner table. Show that the probability of entering both of
your men is 4/9 and that the probability of entering at least one of your
men is 8/9. Use this to compute the probability of entering exactly one of
your two bar men.
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b) Construct a table analogous to Table 6 where you have two men on
the bar and the table’s columns are labeled:

Number of opponent’s points in inner table,
p(Entering both men on next roll), and

p(Entering at least one)

You have one man on the bar. Opponent controls his 2, 4, and 6 points
and has a blot on his 5 point. It is your turn. What is the probability of
being able to hit the blot on your next roll? What is the probability of
your having to enter from the bar without hitting the blot?

BAR
HOME

000

(0]
(] 1 (o] (¢] [¢]

a) Your inner table and all your remaining men are shown above. It is
your roll; opponent (black) has one man on the bar and at least 8 other
men in his inner table. You roll 6-3. What is your best play?

b) The situation is identical to the one described above except that the
opponent’s man on the bar is his only remaining piece. Now what is your
best play?

You have a single man remaining, 8 points from home, and it is your roll.
Your opponent will surely go out if he gets another turn. Show that
p(your winning) < 1/2, so that a double is not called for. Then explain
why this does not contradict the result stated in Exercise 2.11— namely
that the expected count on a backgammon roll is 8%, exceeding the 8
points you need to win

Imagine a backgammon game with the doubling cube replaced by a
“tripling cube” (with faces of 3, 9, 27, 81, 243, 729). Following the
analysis given for the doubling cube, compute the probability of winning
above which a triple should be accepted.

(Exercises 7, 8, and 9 refer to Craps)

37

3.8

(See Figure 3 and Table 8) A field bet is a bet that a total of 2, 3, 4, 9, 10,
11, or 12 will come up on the next roll. Double 1 and double 6 pay 2 to 1,
all others paying even odds. Compute the bettor’s expectation on a $1
field bet and thus obtain the percentage house edge on a field bet. Check
your results with Table 8.

Using Figure 3, compute the house edge (in percent) for each bet whose
rules and payoff make sense to you from the figure. A hardway 8 for 1 bet
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on double 2, for example, pays 8 for I (not 8 to 1) and wins when the
indicated roll (double 2) comes up before a seven or a non-doubles four
total. The bet stays out until a four or seven total comes up. The 10 for 1
hardway bets are similar. The longshot bets (30 for 1 and 15 for 1) are
single roll bets that the indicated total will come up on that roll. You bet
double 1 by itself, and not in conjunction with the double 6.

Consider a casino in which the “no result” craps roll for don’t pass
bettors is “total of 3.” Compute the house edge (in percent) on a don’t
pass bet. Would you prefer to bet pass or don’t pass in a craps game at
such a casino?

In the standard chuck-a-luck game doubles pay 2: 1 and triples pay 3: 1.
Imagine a rules change in which doubles pay x : 1 and triples pay y : 1.
Derive an equation involving x and y (as unknowns) which describes
the relationship between x and y that makes this modified chuck-a-luck
a fair game. Give some specific values for x and y which satisfy this
equation and propose a “best” solution in terms of ease of payoff, ease of
memory, and mathematical appeal.



CHAPTER 4

Permutations, Combinations, and
Applications

Careful counting: Is order important?

Much of the challenge in computing probabilities in situations with a
finite number of elementary events consists of organizing information
systematically, counting cases carefully, and applying the rules cor-
rectly. In this chapter we focus on the organization and counting
process, applying it to some old and new game situations. A crucial
concept in what follows will be the distinction between a permutation
and a combination of objects (people, horses, cards, letters, or other
entities). A permutation is a selection of objects in which order is taken
into account. A combination is a selection in which order is unim-
portant. To motivate and clarify these concepts we ask and then answer
five typical counting questions.

Question 1. In how many different ways can a bridge player arrange a
particular (13 card) bridge hand?

Question 2. How many different finishes among the first 3 places can
occur in an 8 horse race (excluding the possibility of ties)?

Question 3. How many foursomes can be formed from among 7
golfers?

Question 4. How many different 13 card bridge hands are there?

Question 5. How many different baseball batting orders are possible
with a 25 player roster in which any player can bat in any position?

We answer these questions now, starting out slowly and picking up
speed.
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Solution 1. If we think of ordering the given hand from positions 1
through 13, there are 13 choices for the first position, then 12 choices for
the second, then 11 for the third, and so on down to 2 choices for the
twelfth position with the 1 remaining card going in the last position.
Thus there are

13-12-11- - -+ -3-2-1 = 6,227,020,800

arrangements of a given bridge hand. Why do we multiply above rather
than add?

Solution 2. There are 8 choices for the winner, then 7 for the place
horse (2nd place), then 6 for the show horse (3rd place). Accordingly
there are 8:7-6 = 336 different orders of finish as far as the payoff
windows are concerned (ignoring ties).

Solution 3. Consider a score card signed by the foursome. There are 7
possibilities for the first name on the card, six possibilities for the 2nd
name, then 5 possibilities for the 3rd and 4 possibilities for the last
name. This gives 7-6-5-4 = 840 possibilities, where different orderings of
the same 4 players have been counted as different foursomes. But the
wording of the question indicates that order is unimportant, so we
realize that the result of 840 contains considerable duplication. In fact a
given foursome can be ordered in 4-3-2-1 = 24 different ways, so our
total of 840 has counted each foursome 24 times. We see then that there
are 840/24 = 35 possible foursomes that can be chosen.

Solution 4. Again order is unimportant here. We wish to know how
many different hands of 13 cards can be chosen from a 52 card deck. If
order were important there would be

52:51-50-49-48- --- -41-40

—

g

13 factors

possibilities. Since order is unimportant we must divide by
13-12-11- - -+ -3:2-1. We thus obtain the smaller but still astronomi-
cal count of

52-51-50- --- -40
13-12-11- « -+ -1

= 635,013,559,600

different bridge hands.
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Solution 5. Here the wording of the question demands that order be
taken into account, so we do not factor out duplications. The answer is

25-24:23-22-21-20-19-18-17 = 741,354,778,000

——

9 factors

a rather large number of batting orders.

Two very important characteristics of the above solutions should be
noted. First, all of them involve choosing without replacement some
subset from a set of objects. Thus, as each choice is made (position is
filled) the number of choices for the next position decreases by one.
This accounts for the repeated appearance of consecutive integers
(decreasing by 1) and motivates the notation developed in the next
section. If our questions had involved choosing with replacement such as
asking for the number of different 3 spin sequences on a Las Vegas
roulette wheel, the factors multiplied would have remained constant
rather than decreasing by one each time.

A second aspect of our questions is that those asking for ordered
subsets (permutations) have one general form of answer, while those
where order is unimportant (combinations) have a related form which
requires dividing out duplications. The decision as to which approach is
called for requires a careful reading of the question and some realistic
thought about the problem at hand. Specifically, questions 1, 2, and 5
involve permutations, while 3 and 4 call for combinations. We cannot
overemphasize the necessity of thinking carefully about whether order is
important in a given situation before plunging ahead.

Factorials and other notation

To deal with products of successive integers we introduce some
standard and very convenient notation. We abbreviate the product
appearing in solution 1 by 13! (read thirteen factorial) and, more
generally, we define for any positive integer n,

nl=n(n—1)(n-2)(n-13)...3:2-1.

Thus 3!= 6, 5!= 120, and 6! = 720. As a very useful convention we also
define 0!= 1. In working with factorial notation it is most helpful to
note that, for instance, 6! = 6-(5!), so that subsequent factorials can be
computed easily from their predecessors. More generally,

(n+ D= (n+ 1)(nY).
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As can be seen by reviewing the solutions in the previous section, a
single factorial is not usually sufficient to express the desired answer
(this happened only for question 1). A careful look at the massive
cancellation that can occur when factorials divide one another should
show that products and quotients of factorials will serve admirably.
Specifically, the permutation questions 1, 2 and 5 have answers

13! = 13! g _ 8 and 25! 25!
(13 - 13)! T8 =-3) s 25-9) 16!°
The combination questions 3 and 4 have, with the division for dupli-
cations, respective answers

7! 7! 52! 52!

ar(7— 4 a3 and 131(52 — 13)1  131391°

(The factorially inexperienced reader should now check that these 5
quotients do indeed agree with the answers given in the previous
section.)

We see from the above that all questions involving ways of choosing
some number (say r) of objects from an overall number (say n) of
objects can be answered by means of two types of formulas involving
factorials, one formula for permutations and another for combinations.
To highlight this and provide us with even more notational convenience
we define

n!
o= (n—r)
[The number of permutations of n objects taken r at a time] R
n!
C,,=———
ot (n—r)!

[ The number of combinations of n objects taken r at a time ].

For instance, the number of combinations of 5 things taken 2 at a time
is

_ 5! _ 54321 _
2131 2-1-3-2-1

The formula is easy to remember, and cancellation of the largest
factorial in the denominator leads to simple computations.

Cs, 10.




PERMUTATIONS, COMBINATIONS, AND APPLICATIONS 51

We illustrate the use of this shortcut in writing and reasoning with
two additional examples before looking at some more realistic appli-
cations in the next sections.

Question 6. In how many different ways can 3 zeros come up in 10
spins of a roulette wheel?

Solution. A typical configuration for the three zeros might be the lst,
5th, and 7th spins of the wheel. This is a combination question involving
10 objects taken 3 at a time. Indeed, if the 10 spins are represented by
10 slots, we are interested in the number of sets of 3 slots which can be
filled by zeros. By the wording of the question we do not care what
nonzero numbers appear in the remaining 7 slots. Order is unimportant
here since, for instance, switching the zeros in the 1st and 5th spins does
not result in a different event. Hence the desired number of combina-
tions is

Question 7. How many seating arrangements are possible at a poker
game for 8 where the host and hostess must sit at the ends of a narrow,
long, rectangular 12 seated table (1 chair at each end)? The vacant
chairs must remain at the table.

Solution. Assuming the host and hostess have seated themselves, there
are 10 seats remaining to be filled by the 6 guests. Clearly order is
important, so the guests can be seated in Py, s = 10! /4! different ways.
The host and hostess have 2 choices, so there are 210! /4! = 302,400
seating arrangements.

Probabilities in poker

Poker, like backgammon, stands on the borderline between games of
chance (roulette, craps, chuck-a-luck, etc.) and games of pure skill
(checkers, chess, go, etc.). As with backgammon we do not propose a
thorough analysis of poker, referring the interested reader to books
which attempt to treat the theory and practice in detail. Our discussion
here will deal with special cases involving three aspects of the game. We
first illustrate the utility of combinations in computing the probabilities
of some of the well-known 5 card poker hands. Next we analyze some
more realistic questions about obtaining certain hands in the midst of a
deal or on a draw. Finally, we apply some oversimplified assumptions to
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questions of betting—when to drop, when to call, and when to raise. As
usual, a mastery of the specific results we consider may not lead directly
to more profitable poker playing, but should give increased insight into
the conscious or unconscious thought process employed by those “lucky”
consistent winners possessed of shrewdness, sensitivity and good in-
stincts.

Ignoring the order in which the cards are dealt (unimportant in draw
poker though crucial in stud where some of the cards are dealt face-up),
we have

52!

m = 2,598 ,960

Cos=

equally likely 5 card poker hands. The probability of getting any one
hand is then 1/Cs, s (about one in 23 million). Early in Chapter 2 we
computed, by multiplying probabilities, the probability of being dealt 5
Spades in 5 cards. To illustrate the use of combinations we do this
another way. There are

13!

S181 = 1287

Cis,s=

ways of getting 5 Spades, so

Ci,s _ 13'47!  13-12-11-10-9

p(5 Spades) = Cs;s 81521  52-51-50-49-48

= .000495,

agreeing with our previous answer. If we realize that of the 1287 Spade
hands 10 are straight flushes (like 8, 9, 10, Jack, Queen of Spades),
leaving 1277 mere flushes, and that the same applies to each of the other
suits, then we can find

. 1
p(flush) = = 0019654 [N 30—9 ]

p(straight flush) = C40 = .0000153 [z — 1359 ]
52,5 ,

We apply these methods to other highly regarded hands; an Aces
over Kings full house (AAAKK) can occur in C, 5-C, , ways and there
are 13-12 possible types of full houses (why?). Hence

13- 12'C4'3'C4_2 - 13-12-4-6
C52.5 C52,5

— 00144 [mi]

p(full house) = 94
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By similar reasoning, which the reader is urged to reconstruct,

13-48-C, ,  13-48-1 1

p(4 of akind) = Cas = Coae = .00024 [z 67 ] .
Also
) 10-4° - 40 10,200 [ 1 ]
straight) = = = 00392 |~——
plstraight) = —— Cors 253

(In this last calculation, there are 10 types of straights and 4° of each
type, but the 40 straight flushes must be subtracted.)

Finally, consider hands containing a single pair but nothing better.
There are 13(12-11-10)/6 types of one pair hands, each occurring in
Cy,2:4-4-4 ways; so

-43.13-12-11-1
p(one pair, no better) = %2 0/6 _ 1,098,240
C52.5 CSZ.S

1
= 422 ~— .
: |~24]

Table 9 gives from best to worst a complete list of disjoint 5 card poker
hands with the number of ways they can occur and their probabilities.

TABLE 9
5 Card Poker Hands and Their Probabilities
Hand Number of possible ways Probability (in S cards)
Straight flush 40 000015
Four of a kind 624 000240
Full house 3744 001441
Flush 5108 001965
Straight 10,200 003925
Three of a kind 54,912 021129
Two pair 123, 552 047539
One pair 1,098,240 422569
Worse than one pair 1,302,540 501177

TOTALS 2,598,960 = C, 5 1.000000
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The three events we have not dealt with (3 of a kind, 2 pair, no pair) are
the subject of Exercise 4.3.

Table 9 shows forcefully the pecking order of poker hands for 5 card
stud, though it provides no justification for using the same order in
draw games, 7 card stud, or wild-card games. Indeed, the main justifica-
tion in these games is not probability but simplicity.

A poker player seldom uses in quantitative fashion the computed
probabilities for being dealt a given 5 card hand. Much more important
to a player is knowing the probability of obtaining a certain type of
hand when part of it is already dealt. With this knowledge and observa-
tion of the other players and their exposed cards, the player can make
an assessment of the probability of winning the deal by achieving the
desired hand. We illustrate with a few sample hands.

Hand 1. In S card draw against one opponent you are dealt Queen, 7,
3, 2 of Diamonds and the King of Spades. Your probability of drawing
one card and obtaining your flush is clearly 9/47 ~.191. If prior
experience told you that your opponent was drawing 1 card to his two
pair, then p(his full house) = 4/47. Your probability of winning this
particular deal would then be (9/47)(43/47) ~ .175.

Hand 2. In 7 card stud you have 4 Spades among your first 5 cards.
There are 12 other cards face up among which 2 are Spades. What is the
probability of obtaining your flush on your next two cards? There are 7
Spades still hidden from you among the 35 unseen cards. The probabil-
ity (at this moment) of getting no Spade in your next 2 cards is
(28/35)(27/34) ~ .635. Hence

p(completing your flush) ~ 1 — .635 = .365.

Hand 3. The situation is almost the same as in hand 2 except that you
have 3 Spades among your first 4 cards. Again there are 12 other cards
face up, two of which are Spades. Now,

p(no Spade among next 3 cards) = §—§ . §—; . §—g ~ 459

p(1 Spade among next 3 cards) =
28 27 8 28 8 27 8 28 27

—_——— . — —_——— . —— —_— e ¢ ———

363534 7363534 " 36 35 3
Spadevgn 3rd Spade:)n 2nd Spade'on Ist

= C3,| ''''' I~ .424
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(the G, factor arises since there are 3 rounds in which the one Spade
can arrive). Thus

p(completing your flush) ~ 1 — (.459 + .424) = .117.

This could just as easily have been done directly by adding p(2 more
Spades) and p(3 more Spades).

Hand 4. You are dealt two pair (Jacks and 4’s) in 5 card draw. If you
draw 1 card, what is p(full house)? If you keep only the Jacks and draw
three cards, what is p(3 Jacks or better)? Clearly

p(draw 1 for full house) = 4/47 ~ .0851 (about 1 chance in 12).

If three cards are drawn, we challenge the reader to verify that

2 45 44
t =C, ... 4
p(3 Jacks or Jacks up' full house) = C; ; 7 % 35 1221
2 1 45
p(4JaCkS) = 03,2‘E°E‘;B ~ .0028
(something over Jacks* full house) = 4.3 2 ~ 0025.
P 47 46 45

Since the disjoint events described are the only ways to get three Jacks
or better,

p (draw 3 for three Jacks or better) ~ .1221 4 .0028 +.0025 = .1274,

or about 1 chance in 8. Thus if three Jacks is almost certain to win and
two pair to lose, you are considerably better off drawing 3 cards and
throwing away your low pair.

Having illustrated, we hope, the value of organized thinking, careful
counting, and combinations, we leave these probability calculations to
consider the more vital and more elusive question of whether and how
much to bet.

Betting in poker: A simple model

When it is your bet in poker you must make a decision to drop (throw
in your hand), call (pay the requested amount), or raise (increase the
requested amount by some additional amount). As we shall now il-
lustrate, a good poker player should base this decision upon a variety of

tIn poker parlance, this means a full house containing three Jacks.
$L.e. a full house in which the pair consists of Jacks.
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quantitative estimates and projections (plus psychological and intuitive
factors which we do not try to consider here). We will treat the special
case of the final round of betting after all cards have been dealt. The
simple model we construct takes into account the following often highly
speculative information:

p= estimated probability of winning the pot.

¢ = current size of pot prior to present round of betting.

a = amount that must be paid to call all subsequent bets or raises.

r = projected size of raise made by the bettor.
n = estimated number of players involved throughout the final round

of betting.

We assume (somewhat questionably) that n does not depend on 7, so
that (as in many small stake games) bluffing will be to no avail in the

final round.
The bettor’s decision on the last round whether to drop, call, or raise

r units can be based upon the following expectation calculations. In
determining payoffs (gains and losses) we base our estimates on the
amount of money in the bettor’s possession at the moment, not what he
had at the start of the hand (we justify this a bit later). We compute

X(drop) = 0 [he neither adds to nor subtracts from current holdings ]

X(call) = p(c + (n—1a) + 1 —p)(—a) =p(c+ na) —a

gain loss

X(raise) =p(c+ (n—1)a+r))+ (1 —p)—a—r)

=p(c+n(a+r))—(a+7r).
Comparing these expectations, we get

X(raise) > X(call) < X(raise) — X(call) > 0

opnr—r>0
= >l
P n
Furthermore,
S >80 ox(a) > x(d
p>5=p>m=p >—— o X(call) > X(drop).
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We conclude that whenever p > 1/n, X(raise) > X(call) > X(drop), so
a raise is in order. It can further be seen that, under our assumptions,
the bettor should make r, the amount of his raise, the maximum limit
allowed to maximize his expectation. Finally, if p < 1/n then he
should drop unless p > a/(c + na), in which case call. Noting that
a/(c + na) is simply the ratio of what he must bet to the total final pot
size, we can summarize our findings:

If p > 1/n, raise the limit. Otherwise,

cost of calling .

call i final pot size ’

drop if this ratio exceeds p.

As a simple example, let p = 1/6, ¢ = $20, n = 3, and a = $5. Since
p < 1/3 the bettor should either call or drop. Since

5
P>30%35

1

=3

he should call. If ¢ had been $10, the model would suggest a drop
(since p < 5/25). If p had been 1/2, a raise should be made (regardless
of ¢ and a).

The model is clearly oversimplified. Its projections are not startling
and smack of common sense (though the “last bet” behavior of many
indicates that the model might be instructive—“but look at all the
money I’d have won if the other 4 players were all bluffing”). We apply
the model now to justify our claim above that past contributions to the
pot are irrelevant to one’s decision on how to bet at a later stage
(though certainly the overall pot size ¢ is highly relevant). Suppose the
bettor has already contributed g units to the pot; let us compute
expectations with the view that these g units are still his. Then

X(drop) = —g [ he lost g units on the hand]
X(cal) =p(c+ (n—Na—g)+ (1 -p)(—a-—g)
=p(c+na)—a—g
X(raise) =p(c + (n = 1)(a+r) —g)+ (1 —p)(—a—r—g)
=p(c+n(a+r)—(a+r)—g.

Comparing with our previous expectation calculation, we see that as we
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might have expected, each X value has been reduced by g, leaving
their relative order unchanged. Thus the bettor’s contribution to the pot
so far has no bearing on his decision on the current bet. We have
justified that fine and often violated poker (and gambling) maxim:
“Don’t throw good money after bad.”

Our betting analysis is clearly only a beginning. We have ignored
early round betting, the various types of poker (table stakes, pot limit,
etc.), and the ubiquitous two-winner games. Perhaps more fundamen-
tally, we have not discussed bluffing, reading the opponents, and
numerous other subtleties that make poker difficult and inappropriate
to analyze in a fully mathematical way. We trust nonetheless that our
model and the probabilistic examples that preceded it will shed light on
this most fascinating pastime.

Distributions in bridge

We consider only one minor aspect of the complex game of bridge—
the problem of suit distribution probabilities and their implications for
certain facets of the play. Our goal is to illustrate further the utility of
combinations and careful counting in making rational decisions.

The number of different bridge hands was determined previously as
Cs,. 13, a figure exceeding 600 billion. To compute the probability of a
given suit distribution (like 4 of one suit and 3 in each of the others) in a
random hand, we divide the number of bridge hands with such
a distribution by Cs, ,;. We first consider the case of 5-4-3-1 distribu-
tion. If the specific suits (the 5 card suit, the 4 card suit, and the 3 card
suit) are already determined, there are

Cl3'5'Cl3'4'Cl3,3'Cl3,|= 1287‘715'286' 13 = 3,421,322,190

such hands. There are, however, P, ,= 24 ways of permuting the 4
different sized suits in a 5-4-3-1 distribution. Thus the probability of such
a distribution is

Py 4 Ci3.5°Ci3,4 Ci3.3" Ciz ~

5-4-3-1) =
p( ) C52, 13

129

(about one chance in eight).

As a second example consider the 4-3-3-3 hand. Here there are only
P, ;= 4 different suit arrangements (one for each choice of the 4 card
suit). To get the total number of 4-3-3-3 hands we form the product
4:C\3 4-(Cy3,3). Dividing by C, j; one gets the probability p(4-3-3-3)
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=~ .105 (about one chance in 9 or 10). Similarly, the most likely
distribution 4-4-3-2 has

P4,2'(C|3,4)2‘C13.3’C|3.2

C52, 13

p(4-4-3-2) = ~ .216 (about one hand in five).

The factor P, , = 4-3 arises since there are 4 ways to choose the 3 card
suit and then 3 ways to choose the 2 card suit. This uniquely determines
the 4 card suits.

Fortified by these examples, we can give a general formula for the
probability of any specific distribution w-x-y-z (where clearly w + x +
y + z = 13). Let n be the number of different suit arrangements in such
a distribution. The only 3 possible values for n are

24 = P, , if all suits have different size
n=1412=P,, if exactly 2 suits have the same size
4 = P, | if 3 suits have the same size.

Then, reasoning as illustrated in the cases considered previously, we get

n:Ci30 Ciz Cis,y- Cis,:

p(w-x-y-z distribution) =
Co,13

As in the case of poker, the bridge player is not so much interested in
advance probabilities of suit distributions as in distribution-related
decisions which must be made during the play of the hand. Suppose
you, as declarer, and your dummy partner have an 11 Spade trump suit
between you, missing only the King and 2. Holding the Ace and Queen
of Spades in your hand and possessing no special information from the
bidding or play, you must decide whether to lead out your Ace (play for
the drop) hoping the King will fall beneath it, or to lead up to your hand
planning to play your Ace only if the player on your right (call him
East) plays the King (play the firesse). How can you decide whether the
drop or the finesse is the better percentage play? We analyze this in
Table 10, which we now explain. We illustrate how the table is con-
structed by discussing line (3). If East holds the 2 but not the King of
Spades, his hand then requires selecting 12 more cards from the 24 left
unspecified (you and dummy have 26 and the K, 2 of Spades are
accounted for). Hence there are C,,,, ways to have this holding.
Calculating the other entries in the “# of ways™ column and observing
that they must sum to Cy 5 (see Exercise 4.6), we find for example that
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the probability of Spade Holding (3) is
Cos 1z _ 24!/ (121121) — 241131131 1313 _ 13 _

Caw13  26!/(131131) 261121121 26:25 50 -26.
TABLE 10
Missing the K, 2
East Spade Contribution Contribution
holding  # of ways Probability top(drop) to p(finesse)
(¢)) none Ca13 24 0 0
@ K Cu 12 26 26 26
(€)) 2 Cu 12 .26 .26 0
@ K Cun 2 o 24
TOTAL Cos.13 1.00 52 50

Finally, with East holding only the Spade 2, the drop will succeed
(contributing .26 to p(drop)) and the finesse will fail (contributing 0 to
p(finesse)). The analysis for the other holdings is similar. Note that for
holding (2) the immediate appearance of East’s King forces the correct
play of the Ace even if the finesse had been planned. Consequently, .26
is placed in both the drop and finesse columns. We conclude from the
overall totals that a 1-1 split has odds of 52:48 in its favor and that the
drop play will work 52 percent of the time, with favorable odds of
52:50 over the finesse. The reader should see why p(drop) and p(fi-
nesse) need not add to 1. We now confess that for this particular
problem there is a much more direct approach (see Exercise 4.8) and
that our combinatorial method is just a warm-up for bigger and better
things.

Consider now a similar situation where you and partner have 9 Spade
trumps between you, missing only Q,4,3,2. You have the A,K.,J,10,6 in
your hand, enough entries to partner’s hand, and no information on the
opponents’ holdings. The plan is first to lead out the Ace in the hopes of
catching a singleton Queen. If this fails we again ask whether to play for
the drop or to finesse. In Table 11, “x” represents a low card (in this
case a 4, 3, or 2 of Spades). Note that in holdings (3) and (6) the Queen
drops on the lead of the Ace; and in holding (8) the Ace reveals that
East has all missing Spades, so the drop plan is abandoned in this case
(but we chalk up a success in the drop column anyway). We conclude
that the drop has favorable odds of about 58:56 and will work 57.8
percent of the time.
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TABLE 11
Missing the Qxxx
East Spade Contribution Contribution
holding  # of ways Probability top(drop) to p(finesse)
(1) none Co13 048 0 0
(2) X 3. sz' 12 187 0 0
3 Q Cu12 062 062 062
@ xx 3:Cun 203 203 0
e Qx 3-Cu.n 203 .203 203
©® xx Cx.10 062 062 062
O Ox 3:-Cuo 187 0 .187
® Qxx Cao .048 048 048
TOTAL  Cy,13 1.000 578 562
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Our final example shows that the finesse is sometimes the right tactic.

The situation is close to that of Table 11, except that you and partner
have only 8 Spades (you still have A,K,J,10,6), missing Q,5,4,3,2. Again

you lead out your Ace fishing for a singleton and then plan to face the

drop or finesse question. Here we go again! Notice the appearance of
the combination factors (e.g., in holding (4) there are C,,= 6 ways for
East to have just 2 low Spades) and the beautiful symmetry of the third

and fourth columns of the table. Here the odds strongly favor the
finesse (about 51:33), which will succeed 50.8 percent of the time. A
comparison of the results of Tables 11 and 12 provides a justification

TABLE 12
Missing the Qxxxx
East Spade Contribution Contribution
holding # of ways Probability top(drop) to p(finesse)
(1) none C2| 13 020 0 0
(2) X C4‘|‘C21,|2 113 0 0
3 Q Cor 1z 028 028 028
(4) XX C4 2° C2| n 203 0 0
(5) Qx C4 |‘C2| 1 136 136 136
(6) XXX C4 3'C2| 10 136 136 0
(7) Qxx 4,2° C2| 10 .203 0 .203
(8) XXXX C21 .9 028 .028 028
(9) Qxxx C4,3’C21'9 -113 0 .113
(10) QXXXX C21, 8 020 0 0
TOTAL Coo 1o 1.000 328 508
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for the bridge maxim “eight ever (finesse), nine never.” Nowhere do we
justify mathematically that other old standby “one peek is worth two
finesses.”

By a similar reasoning the percentages on any drop vs. finesse
question can be analyzed. Of course such computational activity would
be frowned upon at the bridge table, but the methods are another
illustration of the power of counting. We refer the interested reader to
Oswald Jacoby’s On Gambling which contains extensive tables for these
situations and many others. While there are many other aspects of
bridge that can be treated mathematically, we content ourselves with the
above; but see Exercise 4.7 for some mathematics of game and slam
bidding.

Keno type games

There is a variety of games in which a player selects or is given a set
of numbers, some or all of which he hopes to match with numbers
drawn without replacement from a larger set of numbers. The most
widely known example of this process is probably Bingo, with which we
deal briefly in Exercise 4.9. There is an immense number of variations
on this theme, mostly originating from the English traveling carnival
circuit of the late 19th century. We refer to these as Keno type games
and we focus our attention here on the version of Keno which is played
in casinos in Las Vegas and elsewhere.

In Casino Keno (or Race Horse Keno as it is sometimes called) a
player receives a card with the numbers from 1 to 80 on it. He then
marks the numbers he wants to play (anywhere from 1 to 15 of them)
and indicates the amount of his bet. Twenty numbers are then drawn
without replacement from a ping pong ball blower or in some other
presumably random fashion. If an appropriate proportion of the marked
numbers are drawn, the player gets a payoff somewhat less than that
dictated by the true odds of what transpires.

About 80 percent of the play in Casino Keno is based on marking 10
numbers on the player’s card, which is called a 10-spot ticket. Accord-
ingly, we give a fairly thorough analysis of the 10-spot Keno probabili-
ties and payoffs, leaving a few other questions to the exercises. Table 13
gives probabilities and payoffs for 10-spot Keno. We explain below how
these probabilities are determined.

To explain how this table is constructed we first note that there are

C80. 10 1 ,646,492, 100,120

different ways to mark a 10-spot card. This will always be our
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denominator in the probability calculations. With 10 specific numbers
marked and 20 random numbers drawn, there are C,g ;o (out of the
Cgo,10) Ways for all 10 marked numbers to appear among the 20
numbers drawn. Hence

# ways it can happen
# of elementary events

p(all 10 marked numbers drawn) =

C
= 2019  00000001.

CSO, 10
TABLE 13
10 Spot Keno
# of marked o # ways) House payoff
Numbers drawn # of ways Probability ( Cwom0 ) ona$l bet
10 Cao,10 .0000001 9,999
9 Ca,5° Coo,1 .0000061 2,599
8 Ca,5° Ceo,2 0001354 1,299
7 Cr0,7°Con,3 0016111 179
6 Ca.6" Ceo, 4 0114793 17
5 Czo_ 5° Ca)_ 5 .05 14276 l
TOTAL 106,461,978,304 0646596

To see how products of combinations arise, ronsider the case of
marking exactly 6 winning numbers. Assume, for onr analysis, that the
20 random numbers have been determined, bu* remain unknown to the
player. In how many ways can exactly 6 out of 10 marked numbers
appear among the 20 numbers drawn? (In actuality, tae player marks
his ticket before the numbers are drawn, but our reinterpretation wil
not affect the results.) There are C,, ¢ combinations of 6 marked
numbers appearing among the 20 numbers drawn, but for each such
combination there remain 4 marked numbers to be chosen among the 60
undrawn numbers (possible in Cg 4 ways). Thus there is a total of
Cyo,6°Ceo,4 €qually likely ways to have exactly 6 of the 10 marked
numbers drawn. The remainder of the table (except for the payoffs,
which may vary slightly and are not up to us to compute!) should now
be understandable and provides us with another delightful application
of the power of combinatorial counting,

As can be seen from Table 13, the payoffs for each row are consider-
ably below what the probabilities would dictate in a fair game situation.
You will collect a payoff with probability .065 (about 1 time in 15) and
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the probability of losing your dollar is 1 — .065 = .935 (if 4 or fewer of
your marked numbers are drawn, you lose). Multiplying each payoff by
its probability and adding, we obtain the expectation on a $1 bet:

X(10-spot Keno) =~ .001 + .016 + .175 + .288 + .195 + .051 — 935

~ —.21.

We conclude by observing that the house edge on a 10-spot bet is
close to 21 percent (you expect to lose 21 cents for each dollar bet).
Exercise 4.11 illustrates the fact that all other Casino Keno bets have a
similar house edge—making craps and even roulette and chuck-a-luck
games seem like a gambler’s haven in comparison.

Exercises

4.1 Consider a baseball team with a 25 player roster including 10 pitchers.
Exactly one pitcher must be in the lineup, batting in the ninth position.
Write down an expression for the number of possible batting orders.

4.2 A group of 9 people decide to split up into a bridge foursome and a
backgammon twosome, with the remaining 3 people unoccupied.

a) Regarding two bridge foursomes as identical regardless of how partners
are arranged, in how many different ways can these 9 people split up?

b) Now treating bridge foursomes as identical only if, for each player,
partner and right hand opponent remain fixed, answer the question asked
in a).

4.3 a) Verify the claim made in Table 9 about the number of possible 3 of a
kind poker hands.
b) Do the same for the number of possible two pair poker hands.

¢) If all the information in Table 9 has been obtained except for the
“worse than one pair” row, explain in words how that last information
can be deduced. Do not make the actual computation.

44 Write expressions for the number of possible bridge hands with each of
the following distributions.
a) 10-1-1-1.
b) 5-5-3-0.
¢) 7-3-2-1.

4.5 a) Write an expression for the number of possible bridge deals (a deal is
the passing out of a separate hand to each of the 4 players).

b) Use a) to write an expression for the probability of a bridge deal in
which each player is dealt a 13 card suit. This event seems to be reported
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as happening somewhere almost every year. Does your answer suggest
that honest reporting and truly random dealing are taking place?

Reread the discussion following Table 10, where it is observed that the
“# of Ways” column must sum to Cys 3. Prove directly from the
definition of combinations that indeed Cu’n + Cu,lz + Cu’ 12 + Cu"
= Cy6,13- Hint: give all the fractions involved a common denominator of
13!-13!.

(Game and slam bidding) The following table summarizes points awarded
(or lost) in duplicate bridge scoring in various nonvulnerable and vulner-
able successes (and failures) involving no-trump bids. A game bid of 3NT
requires 9 tricks, a small slam (6NT) requires 12 tricks, and a grand slam
(7NT) requires all 13 tricks. Down one means 1 less trick was made than
was bid.

Bid2NT  Bid SNT
Small Grand Down and make and make
Game slam slam one  8(9) tricks 11(12) tricks

non-vulnerable 400 990 1520 —50 120(150) 460 (490)
vulnerable 600 1440 2220 —100 120(150) 660 (690)

Assume that contemplated bids will never be off by more than 1 trick and
ignore the possibility of an opponent’s double. Also assume your goal is
to maximize points scored.

a) Let p = estimated probability of making a no-trump game (9 tricks).
Show that if you are nonvulnerable then

X(Bid 3NT) = p(400) + (1 — p)(—50)

and
X(Bid 2NT) = p(150) + (1 — p)(120).

Conclude that under our assumptions a non-vulnerable no-trump game
should be bid when p> 17/42 (about .4), and bidding should stop at 2NT
when p<17/42. Then carry out a similar analysis in the vulnerable case
and show that the borderline value of p is 22/67 (about 1/3).

b) Let p=estimated probability of making a small slam (12 tricks) in
no-trump. Using the ideas of a), show that the borderline probability
beyond which at least 6NT should be bid is p=51/101 when non-
vulnerable and p=76/151 when vulnerable. Thus p is very close to 1/2
in each case.

) Let p=estimated probability of making a grand slam (13 tricks) in
no-trump. Also, note that making all 13 tricks when a small slam is bid
adds 30 points (1 overtrick) to the “small slam” column of our table.
Show that the borderline probabilities for the grand slam bid are p=52/77



48

49

4.10

4.11

MATHEMATICS OF GAMES AND GAMBLING

(non-vulnerable) and p=154/229 (vulnerable). Thus p is very close to
2/3 in each case.

a) Reestablish the conclusions of Table 10 by completing the following
simple line of argument: with only 2 Spades among the opponents’ 26
cards, consider the hand containing the Spade Two. There are 12 slots
remaining in that hand while there are 13 slots in the other opponent’s
hand in which the Spade King can be found....

b) The argument in a) shows directly that the odds in favor of a 1-1 split
are 13:12. Discuss and try to resolve the following “paradox.” To
improve the odds of the 1-1 split, first lead out one card in each side suit
(besides Spades). Then opponents have a total of 20 cards between them
and when the argument of a) is applied the odds in favor of a 1-1 split
have been improved to 10: 9. Therefore you improve your chances for the
drop by playing out side suits first!

A Bingo card has 5 columns (B-I-N-G-O) with 5 numbers in each
column, All numbers are distinct and values range from 1 to 75 (in
England from 1 to 90). For the moment we ignore the “free” square
usually found in the center of the card.

a) In the first five draws from the 75 numbers in the Bingo drum how
many different sets of 5 numbers can be drawn?

b) By counting the number of ways to win on a particular Bingo card
(rows, columns, diagonals, but not “four corners”), compute the probabil-
ity of winning with a single card after just 5 numbers have been drawn.

¢) Now answer b) again, this time allowing for a “free” square and a win
using “four corners.” Hint: on a given card there are 5 wins requiring
only four numbers, and each of these wins can occur on 71 different
draws of 5 numbers.

a) Consider a l-spot Keno bet in which you mark only 1 number and
hope it will be among the 20 (out of a possible 80) numbers drawn. If
your number is drawn you win $2.20 and otherwise you lose your $1 bet.
Show that the house edge in 1-spot Keno is exactly 20 percent.

b) A 2-spot Keno bet wins $12 if both marked numbers are drawn, with
the $1 stake being lost otherwise. Prove that the house edge for this bet is
69/316~-21.84 percent.

a) Consider a general n-spot Keno ticket where n numbers are marked
and then 20 out of 80 numbers are drawn. Prove that for k <n,

C20,k'C60,n—k

p(exactly k marked numbers will be drawn) = C
80,7

b) Argue that the house payoff on a perfect 10-spot Keno ticket (all 10
numbers are drawn) could be raised from $9,999 to $99,999 without
significantly lowering the house edge. Why don’t all casinos make this
change as a means of attracting publicity and customers?



CHAPTER 5

Play it Again Sam: The Binomial
Distribution

Games and repeated trials

The expectation concept provides a way of predicting what should
happen, on the average, if one plays certain games long enough. Yet
there are unquestionably people who have made negative expectation
bets a large number of times and ended up with a profit. In this chapter
we consider the mathematics of repeated plays (trials) of a given game
(experiment). The technique developed will enable us to make theoreti-
cal estimates of just how likely one is to “beat the odds” in a specific
number of bets at given odds. The relevance of such a theory should be
apparent to the reader, for almost all gambling is of this repeated play
variety. We comment further that any repeated activity whose proba-
bility of success remains fixed to each repetition will be subject to the
mathematics developed. To stretch a point, we might argue than an
individual basketball player (or a whole team) shooting 40 shots
(repeated trials) a game is merely acting out our theory, and that the
surprise wins, routine performances, and upset losses are natural con-
sequences of the theory’s laws. Such dehumanization is, to be sure,
highly oversimplified and often inaccurate, but it does have some
validity and might even provide solace in difficult times.

The binomial distribution

We motivate the general case with a question raised in passing by
Dostoyevsky’s The Gambler (Chapter 1) and partially treated in Question
6 of Chapter 4. Given a European roulette wheel (37 numbers including
a 0 but no 00), what is the probability of getting exactly 3 zeros in 10
spins of the wheel? A typical sequence of 10 spins in which 3 zeros
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occur might be XX0XXX00XX, where X represents “not 0.” The
probability of this particular sequence of independent spins is

36 36 1 36 36 36 1 1 36 36 (36)7(1

___________________ ) \37

3
37 37 37 37 37 37 37 371 37 37 )N-OOOOM-

To obtain the desired overall probability, we need to multiply this
probability by the number of disjoint, equally likely ways 3 zeros can
occur. This is a “combination” question with answer C)o ;. We con-
clude that

36\7( 1\3
ﬁ) (ﬁ) = 120-.000016 = .00192

or about 1 chance in 500. The reader should now see that the reasoning
applied above generalizes beautifully to the case where the probability
of success in each independent trial is p (rather than 1/37), the probabil-
ity of failure is ¢ = 1 — p (rather than 36/37), the number of trials is n
(rather than 10), and the specified number of successes is r (rather than
3). We give one more example before presenting the general result.

You make 100 bets of $1 on “pass” in casino craps. What is your
probability of winning exactly $6? Recall that the probability p of
success in a pass bet is p = .493, so that ¢ = .507. The only way you
can win exactly $6 in 100 even payoff $1 bets is to win 53 and lose 47.
Hence, in the n = 100 trials, we are interested in precisely r = 53
successes and n — r = 47 failures. Reasoning as before,

p(3 zeros in 10 spins) = C,, 3(

p(winning $6) = Cyg9, s3-(-507)'(.493)* = C, ,¢"~"p".

We now have ample justification for stating an important result in
statistics which has considerable utility in the theory of gambling.

If an experiment with fixed probability p of success is repeated for n
independent trials, then

pexactly r successes in n trials) = C, .¢"""p" (q=1—p).

This distribution of probabilities for r =0, 1,2,...,n successes is called
the binomial distribution, and we present below a few of its many types
of applications. We caution that the hypotheses of fixed probability and
independent trials must be satisfied before the binomial distribution
results can be applied.

Application 1. An honest coin is flipped 8 times. What is the probabil-
ity of getting exactly r heads? Since p=g=1/2 and ¢*'p"
= (1/2)® = 1/256, the solution is given by the following table:
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# of Heads (r) # of Ways Probability
0 Cgo=1 1/256
1 Cg,=8 8,256
2 Ci,=28 28/256
3 Cyy= 56 56,256
4 Ca=170 70/256
5 Cs’s = 56 56/256
6 Cye=28 28,/256
7 Cs’7 = § 8/256
8 Cs‘s =] 1/256

The symmetry of the probabilities in the table results from the fact that
p = 1/2. Note that p(4 heads) = 70/256 = .273. Likewise,

1 1 9
p(7 or more heads) = C; ,- 756 + Cos 556 = 35¢
and
247
p(6 or fewer heads) = 1 — p(7 or more heads) = 356"

Application 2.  An honest die is rolled 12 times. Compute the probabil-
ity that a five or six will turn up 4 or more times. Here “success” is the
event 5 or 6,s0 p = 1/3 and ¢ = 2/3. Thus

(4 or more successes)
= | — p(3 or fewer successes)
= 1 —[ p(3 successes) + p(2 successes)

+ p(1 success) + p(0 successes) ]
= | —[G;,s(%f(:})s + C.z,z(%)m(%)z
vl () + cudd) ()]

512 1024 2048 . 4096
=1—[220-F+66- TRt ]
__2088% o

531,441
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Application 3. Assume that the Phillies and the Yankees are in the
world series, that the Phillies have a 3/5 chance of winning any given
game, and that the games are independent experiments. What is the
probability of a 7 game series? A 7 game series will occur when and
only when each team wins 3 of the first 6 games. Thus

p(Phillies win 3 out of 6) = C; 5(.4)°(.6)> = 20-.064- 216 = 276.

The binomial distribution, clearly tied in with probabilities and com-
binations, is intimately linked to a familiar result of high school algebra
and to Blaise Pascal’s famous triangle. We briefly state the connection
here to make these beautiful ideas easier to remember and appreciate.
Using the familiar binomial expansions

(a+ b)* =1a+ 2ab + 1b% (a + b)® = 1a®+ 3a%b + 3ab> + 15°

as motivation and counting arguments similar to those previously con-
sidered, we are led to

The Binomial Theorem. For any numbers q and p and any positive
integer n,

(g+p)"=C, 09"+ C,q" o+ - +C, .., "'+ C, ,p".

While we do not offer a formal proof t of this important result, we invite
the reader to think about how

(g+p)"=(qg+p)Xg+p)g+p)---(q+p)

can be expanded by successive multiplication. Each term in the expan-
sion is formed by choosing either ¢ or p from each of the » factors
(g + p). Foreachr = 0,1,2,...,n there are precisely C, , distinct ways
to choose r of the p’s from the n factors (¢ + p). This explains the
appearance of the terms C, ,¢"”'p" in the binomial theorem.

If p and ¢ happen to be complementary probabilities (¢ +p = 1)
with p the probability of success, then (¢ + p)" = 1, so the binomial
theorem expresses 1 as a sum of n + 1 terms. From our binomial
distribution results, we see that these n + 1 terms can be interpreted
respectively as the probability of » = 0,1,2,...,n — 1,n successes in n
independent trials. Since these n + 1 disjoint events are the only
outcomes possible, their probabilities must of course add up to 1.

tSee 1. Niven's Mathematics of Choice, NML vol. 15, MAA Washington (1965), p. 34.
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This circle (or triangle) of ideas is nicely completed by observing that
the aptly named binomial coefficients C, , can be obtained not only from
factorials and binomial expansions, but also by constructing Pascal’s
triangle.

n 0 1 2 3 4

0

1 1 1

2 1 2 1

3 1 3 3 1

4 1 4 6 4 1

5 1 S 10 10 5 1

6 1 6 @® 20 15 6 1

The entries in each row (after row 0) are obtained by summing the two
entries in the row above directly on top of and diagonally to the left of
the desired entry. When a blank is encountered in this summing process
it is taken to be 0. The circled entry 15 in row 6, column 2 is thus
obtained as the sum of 5 and 10. It is a remarkable fact that the entry in
row n and column 7 of this triangle is precisely C, , (e.g., 15=C5,=
6!/(2!4")—for this to work we must start our row and column count at
0). The entries in row n are the respective coefficients in the expansion

of (9 +p)"
Beating the odds and the “law” of averages

It should be apparent that the binomial distribution gives us, at least
in theory, a means of computing our chances of winning a specified
amount (i.e., having r successes) in a specified number n of plays of a
constant bet gambling game with constant probability p of success. It
should be equally apparent, however, that working with realistic and
therefore often large values of n and r leads to computations (for C, ,
and high powers of p and ¢) which are lengthy enough to tax even a
computer. To make things worse, we are usually interested not simply in
the probability of winning (or losing) a specified amount, but at least
that amount, in which case many such computations must be summed.
In this section we state theoretical results which provide easily com-
puted and (for large n) accurate approximations for the desired proba-
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bilities. We then use the method described to show how to construct
exceedingly revealing tables concerning prospects for “beating the odds”
over a long series of bets.

In Figure 4 we exhibit a series of frequency charts (or histograms)
which reflect the probabilities of various profits and losses in repeated
“red” bets on a Las Vegas roulette wheel (p = 18/38 =~ .474, stake =
$1). The first 4 charts (4, 8, 16, and 32 spins) were constructed by
computing binomial distribution probabilities, and are therefore exact.
The 64 spin chart was obtained using the normal approximation which
we now discuss. Before beginning this discussion we make some qualita-
tive observations about the charts in Figure 4. Initially the charts peak

4 Spins | 8 Spins

break even

prob. prob.

w

3

1
|
+
{
.276 22

3
I:d" L : ' _0.?0’—' .006}
2

T 1 3 4 T1234$67B
# of wins

# of wins
|
! 16 Spins 1 32 Spins
prob. | prob. I
|
! 1
| 1
i !
t |
! !
| | ]
i A J s e RARTARR
112345678910111213141516 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
# of wins ! # of wins
' 64 Spins

prob.

ol - - A
4 8 12 16 20 26 28 32 36 40 44 48 52 56 60 64
# of wins

Figure 4 The normal approximation to the binomial distribution (p = .474).
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around O profit (# of wins r = n/2) though some asymmetry in favor
of losses is apparent. As the number of plays increases the peaks move
leftward from the r = n/2 break-even point, but a bell-shaped symme-
try about the peaks becomes very striking. In the final chart we
superimpose a perfect bell-shaped normal distribution curve over the
binomial distribution rectangles to emphasize this point. Finally, we
note that since each rectangle in each chart has a base width of 1 unit,
heights of the rectangles (probabilities) can be identified with the areas,
which must, for each chart, add up to 1.

The bell-shaped normal distribution curve is obtained by graphing
exponential functions of the form ae ~*=®" where the constants a, b, ¢
are chosen to ensure that

a) The total area under the curve is 1.

b) The peak of the curve is at an appropriate point b (it turns out to be
the expected number np of successes in » trials) on the horizontal
axis.

c) The sharpness of the peak reflects the particular binomial situation
being approximated.

The fundamental result which we now assert is:

The normal approximation to the binomial distribution: For cases in
which np > 5 and nq > 5, an appropriate normal distribution will provide
a “good” approximation to the binomial distribution.

Since the approximating exponential curve and the areas under vari-
ous parts of it are no easier (in fact harder) to compute exactly than the
corresponding binomial areas (probabilities), it would seem that we
have gained very little computationally. The key point is, however, that
every normal probability curve can be reduced to a standard normal

curve (defined by the function (1/V27 )e~%'/2). Table 14 provides a
way of computing areas under the standard normal curve. For each
number Z on the horizontal axis, the table gives the area under the
standard normal curve to the right of Z. Areas to the left of Z can then
be obtained by subtracting from 1. Our task now is to explain how to
compute areas in any binomial distribution chart (with np > 5 and
ng > 5) by referring to Table 14.

Given a binomial distribution situation (with n and p specified), let
r denote a given number of successes (in the n repeated independent
trials).

Let 1
r=s—np

v.npq

Z =
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TABLE 14
Areas under the Standard Normal Curve

. N Area
For each Z, the entry in the table is the A
area under the curve to the right of Z. -
4 0,00 ()] 002 003 0.04 0,05 0.06 0,07 a.08 0,09
NVVW’nIWM ~————
34 1 00003 00003 00003 00003 00003 00003 00003 00003 00003 O
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31 | 00010 00003 00009 00009 00008 00008 00008 00008 00007 00007
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Then p(r or more successes in n trials) ~ the area (from Table 14) to
the right of the computed Z value. A careful look at the way the
rectangle corresponding to r wins in Figure 4 has a base with endpoints
r—1/2 and r + 1/2 should strongly suggest where the —1/2 comes
from in the formula for Z. By converting the number r of successes to
profit (or loss), we are now able to answer the probability questions in
this binomial situation about repeated, fixed odds bets. We always
assume a $1 bet, but it should be clear how to deal with other size bets
(see Exercise 5.4). We illustrate these ideas by first answering some
questions based upon the situation treated in Figure 4 (p = .474) and
an even money house payoff.

1. What is p(ending up ahead after 64 bets of $1)? We are interested
in r = 33, since 33 or more wins is equivalent to a profit. Hence

_ 32.5-64-474 _2.164 _
V64 474- 526 399

Consulting Table 14, we see that the area corresponding to a Z value of
.54 is 2946, so p(ending up ahead) ~ .295.

z 54.

2. Whatis p(winning exactly $20 after 64 bets of $1)? The desired area
cannot be obtained directly from Table 14; but, reasoning geometri-
cally, this area will be the difference between the areas generated for
r = 42 (win $20) and r = 43 (win $22). Since

41.5 — 64- 474 42.5 — 64-.474

we conclude that p(winning exactly $20) ~ .0026 — .0012 = .0014.

= 3.045,

3. What is p(losing $10 or more after 64 bets of $1)? Since losing $10
is the same as not winning 28 or more bets (check this),

p(losing $10 or more) = 1 — p(r > 28).
Here Z,3= —.71, so p(r > 28) ~ .761. Finally,
p(losing $10 or more) ~ 1 — .761 = .239.

4. What is p(being even or ahead after 10,000 bets)? Here r = 5,000,
S0

_ 4999.5 — 10,000- 474
V'10,000- .474-.526

VA =~ 5.20.
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This Z value can be seen from the table to correspond to an area of
essentially 0 (certainly well below .0002 at any rate). Accordingly,
p(being even or ahead) ~ 0, so with such a large number of bets we
have no right to expect anything but an overall loss.

5. What is p(winning $40 or more) in 500 roulette bets of $1 on a
single number? If your number (paying 35 to 1) comes up r times in
500 spins, your profit is r-35 + (500 — r)(—1). To obtain the number
of wins needed for a $40 profit, we solve the equation

r-35+ (500 — r)(—1) =40
for r to obtain 36r = 540 or r = 15. Since for each bet the probability
of winning is p = 1/38 ~. 026, we obtain
14.5 — 500-.026 _ 1.5
V500-.026-.974 36

We conclude that p(winning $40 or more) ~ .337.

Z= ~ .42.

The above reasoning should convince the reader of the power, econ-
omy, and applicability of the normal approximation. Using this reason-
ing extensively, we can construct the highly informative Table 15. One
can assess from this table one’s prospects at various probabilities, house
odds, and numbers of repeated plays. Some of the particular probabili-
ties and payoffs have been chosen to correspond to well known gam-
bling house bets. It should be pointed out that our analysis (and each
row of Table 15) can only deal with a particular type of bet in a
particular game. In games such as craps or roulette where a variety of
bets are available, each type of bet must be analyzed separately.
Activities such as slot machines and racetrack betting with fixed house
edge but a variety of unpredictable payoffs would be very hard to
describe in the form of Table 15.

The implications of Table 15 should be sobering to the devoted
casino gambler. At any number of repeated plays of a positive house
edge game, there is a possibility of winning and even winning big. But
as the number of plays increases, the probability of winning drops, and
the drop is more dramatic for larger house edge games (look at the
D = 0 columns). The results do nor say that a winning streak will tend
to be counterbalanced by a corresponding run of losses (or vice versa!).
They do say that anyone who expects to gamble at unfavorable odds for
any length of time should hold little hope for turning a profit, and the
longer the time and the higher the house edge, the less this hope should
be. This is a consequence of the “law of averages,” and this law is one
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that even the most optimistic, forceful, moderately wealthy, or even
“lucky” gambler cannot hope to repeal.

There is an additional and somewhat surprising conclusion to be
drawn from Table 15. Comparing the corresponding probabilities for
the two roulette bets we see that the higher odds (longshot) bet affords
larger probabilities of being ahead in every case. Also it is clear that the
probability of being ahead on any particular type of bet drops as the
number of bets increase (look at the “ahead 0 or more dollars” column).
Both of these observations lead us to the following conclusion. If you
are fighting unfavorable odds and are interested in winning a specific
sum of money while wagering a fixed total amount, your best strategy is
to make large bets and, under equal expectation, to prefer higher payoff
lower probability types of bets. This will result in fewer bets (trials) and
increased probability of achieving your goal. Is there a catch in this
strategy? Yes, for a large bet, longshot-biased strategy also increases
your probability of losing larger amounts and losing quickly!

Betting systems

Despite a rational interpretation of probabilities, expectations, and
even the binomial distribution, there are many gamblers, both casual
and inveterate, who believe that they have found or will find a winning
system of betting in games with a house edge. Most of these proposed
systems are naive, based on superstition, humorous, or sometimes
pathetic. There are certain systems, however, which are compelling,
difficult to deflate, and perhaps even successful for specific gambling
goals (lowering the house edge not being one of them). We will not
consider systems based upon elaborate record keeping to spot “non-
random” trends of the wheel, dice, or whatever. Most such efforts
depend on after-the-fact reasoning and are doomed to failure, though
cases of faulty (or crooked) apparatus have very occasionally led to
success. We also dismiss systems for “knowing” what is due or for
recognizing “hot” dice and “friendly” wheels until such time as para-
psychology finds itself on a firmer foundation. The systems we do
consider base their often considerable appeal on varying the bet size in
some fashion depending on what has happened previously. We analyze
several such systems knowing full well that there are many other
“sure-fire” systems not treated here.

A most intriguing system is the “double when you lose” or Martingale
strategy. In this system one starts betting at a given stake, say 1 unit,
and doubles the previous bet after a loss while returning to the original
1 unit stake after each win. It is easy to see that after r wins the player
will be ahead by r units , and that the only thing the player need fear is
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a long streak of consecutive losses. Indeed if a player goes to Las Vegas
with the primary goal of coming out ahead (no matter by how little), it
is hard to imagine a better system. If his bankroll is $63 and a $1
minimum bet is in effect, he should play the doubling system starting
with a $1 even payoff bet, planning to quit and go home as soon as he
wins the first time. The only way he can fail is to lose the first 6 bets
(1 +2 4+ 4 + 8 + 16 + 32 = 63) which has probability (1 — p)® (where
p s, as usual, the probability of winning on each trial). Even for Las
Vegas roulette (p = .474) the probability of losing the first 6 bets is
(:526)% = .021(~~ 1/50), a comfortably small magnitude. It is true that
his loss of $63 in this unlikely event will be much greater than his hoped
for $1 gain, but is not the payoff (bragging to all one’s friends about
how he beat the Vegas syndicate) worth the small risk? The answer is
yes if winning something (never mind the air fare) is his main goal. The
answer is no if he believes that his mathematical expectation per dollar
bet has been altered. The system would be foolproof but for two vital
facts:

1. The player has only a finite amount of capital.
2. The casino imposes a maximum on any given bet.

Each of these facts imposes a limit upon the number of losses beyond
which the doubling must be abandoned.

Assuming that the doubling system can only be followed » times and
taking p = .5 (a fair game), let us apply the expectation concept to this
“go home a winner” system. Then

p(losing on all n bets) = ¢g”,
and hence
p(winning on one of the first n bets) = 1 — g".

Since the payoff after the first win is 1 unit while the payoff after n
lossesis 1 +2 + 4 +8... 42" = 2"— 1 units, we have

X=(1-¢")—q"2"—-1)=1-4"2".

In the special case p =.5, we have ¢ = 1— p =.5 and X = 0. Thus, as
expected, the doubling strategy does not affect the expectation per
dollar bet in this special case.

The class of cancellation systems is also fascinating to analyze. Decide
upon how much you want to win and then write down a list of positive
numbers (the list may be of any size) whose sum equals the amount you
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want to win. At any stage, your next bet is the sum of the first and last
numbers currently on the list (if there is just one number left, make that
your bet). If you win, cross the two (or conceivably one) numbers just
used from the list. If you lose, write the amount just lost on that bet at
the end of the list. Continue until all numbers (old and new) are crossed
from the list (in which case you have achieved your goal) or until you
are broke! As an example, let us set out to win $21. In Table 16 we keep
a tally of what transpires based on some plausible but fictitious out-
comes. Our initial list, chosen to add to 21,is 4,7, 1, 3,4, 2.

TABLE 16
A Cancellation System in Action
Current List Amount Bet Outcome Current Overall Profit
4v791’374’2 6 Lose -6
4,7,1,3,4,2,6 10 Lose -16
4,7,1,3,4,2,6,10 14 Win -2
7,1,3,4,2,6 13 Lose -15
7,1,3,4,3,6,13 20 Lose -35
7,1,3,4,2,6,13,20 27 Win -8
1,3,4,2,6,1 14 Win 6
3,4,2,6 9 Lose -3
3,4,2,6,9 12 Lose - 15
3,4,2,6,9,12 15 Lose -30
3,4,2,6,9,12,15 18 Win -12
4,2,6,9,12 16 Win 4
2,6,9 11 Lose -7
2,6,9,11 13 Win 6
6,9 15 Lose -9
6,9,15 21 Win 12
9 9 Lose 3
9,9 18 Win @ goal achieved
Total 271 8 Wins
10 Losses

It can be seen why the overall profit equals the sum of the numbers in
the initial list. Every loss simply adds to the list’s sum, while each win
removes from the list the amount won. At any stage the sum of the
numbers in the list represents the amount we have yet to win to achieve
our goal. The example and more general analysis show why this system
seems so appealing. As long as losses do not outnumber wins by close to
a 2 to 1 margin, more numbers will be crossed out (2 for each win) than
will be added (1 for each loss), so the list will shrink. As with the
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doubling system, the flaw in the system is that bet sizes may escalate,
reaching your or the house’s limit. Specific mathematical analysis is
difficult (Exercise 7 provides a start), but the argument in the next
paragraph should shatter any false hopes the system player might have
for this or any other variable bet system on a fixed probability game
(but see the following section on a genuinely winning system in black-
jack).

The expectation calculations of Chapters 2 and 3 have hopefully
convinced the reader that any single bet of a given size in a house edge
game is not a winning system. It is a small step from this to the
realization that any repeated series of fixed sized bets cannot alter the
house edge. Consider now any variable bet system. Despite its possible
numerical mystery and the ordering of the various bets, it is simply
made up of groups of these fixed sized bets (a certain number of $1 bets,
some $2 bets, etc.). Since each group of fixed sized bets cannot alter the
house edge, neither can any combination of such groups. While these
variable bet systems are fun to tinker with, we need not trouble
ourselves any longer about their possible success. The casinos do not
trouble themselves either. They welcome and thrive upon system players
in roulette, craps, and any other game where the edge is constantly in
the casino’s favor.

A brief Blackjack breakthrough

The game of blackjack, like craps, has two versions—a “friendly”
version where the rotating dealer is free to make his own decisions and a
casino version (sometimes called twenty-one) where the house dealer
must follow a simple and inflexible strategy. We confine ourselves to the
casino version of blackjack, whose rules we assume the reader knows or
is willing to find out by undergoing a quick course with a knowledgea-
ble dealer, a real deck, and monopoly money.

Our interest in blackjack here stems primarily from the fact that there
currently do exist playing and betting systems which can make this
game a favorable one for the casino player (the only commonly known
example). It is important to see why this does not contradict our
analysis in the last section. Indeed repeated play at blackjack is not a
binomial distribution situation since the probabilities change, depending
on what cards have already been dealt. While a deal of blackjack
starting with a full deck gives the dealer a well-documented house edge
(1 or 2 percent), the dealing of cards without replacement allows for
situations when the deck is favorable to the bettor. We illustrate with
two contrived but instructive situations.
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Blackjack example 1. Imagine that by careful observation and prodigi-
ous counting you and the dealer start a new hand with just 5 cards
remaining in the deck, known by you to be 3 eights and 2 sevens. Your
strategy: bet the house limit, stand pat, sit back, and smile. Since the
dealer must take a card with 16 or under it is easy to see that, no matter
which two cards you have, the dealer must take a third card which will
put him over with at least 22.

Blackjack example 2. After initial bets have been made and up cards
dealt, an insurance bet of up to one half the initial bet can be made by a
player when the dealer’s up card is an Ace. The player is paid2to 1 on
this bet if the dealer has blackjack, and loses otherwise. It is indeed a
form of insurance against a dealer’s blackjack. Suppose you have seen 5
cards from the deck which include, besides the dealer’s Ace, 4 cards, all
nines or below. Then p(dealer has blackjack) = 16/47 ~ .34. An in-
surance bet of 1 unit at 2 to 1 house odds will then lead to

X(insurance bet) = ‘1‘—,61(2) + %(— 1) = % ~ .02 [2% player’s edge].

Since this expectation is positive, you should take as much insurance as
you can in this not so unrealistic situation.

The above examples should illustrate how varying one’s bets can be a
good strategy in blackjack. It is remarkable that if this strategy is
carried through to the limit, blackjack can be made into a game with a
significantly negative house edge. It is first necessary to know an
effectively optimal strategy for full deck blackjack and then, taking into
account cards that are seen, to vary play slightly and bet sizes consider-
ably. Roughly speaking, the richer the deck is in tens and face cards, the
better off the player is and the more he should bet. The more 5’s and 6’s
there are in the deck, the less he should bet (can you see why?). It is
now blackjack folklore how the mathematician E. O. Thorp used a
digital computer to evolve one such winning blackjack system. We
heartily recommend Thorp’s book Beat the Dealer (2nd edition) to the
reader interested in his story and his refined and still favorable system.

Needless to say, the prospect of casino gambling with a positive
expectation has led to considerable interest and activity involving even
more refined systems. The most successful and enterprising approach to
date is a hierarchy of five increasingly complex systems developed and
marketed by Lawrence Revere. The most refined Revere system assigns
a point count to virtually every card (whatever the number of decks) for
the purpose of optimizing blackjack card decisions and betting. The cost
of the revered and coveted booklet describing this exceedingly difficult
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system is a mere $200. It is claimed to produce a player edge of 6
percent with only modest variations in bet size.

How did the world of organized gambling respond to the existence of
such genuine systems? After initial scepticism (a natural reaction in view
of the many poor systems previously tried), the casinos became be-
lievers. They responded with minor rule changes, multiple decks, more
frequent shuffling, and eviction of winning players suspected of effec-
tive card counting. The edge has been nullified for all but the cleverest,
quickest, and most subtle card counters. Even allowing for the small,
roving band of highly skilled and seldom detected blackjack system
players, the casinos as usual have increased their edge. For, much to
their delight, they are inundated with pseudo-system players attracted
by the gambling urge and the publicity that the genuine systems have
generated. Should the supply of skilled system players grow, however,
be on the lookout for another rules change— the casinos must have their
edge.

Exercises

5.1  An honest die is rolled 5 times.
a) Compute the probability of obtaining (i) 0 sixes, (i) 1 six, (iii) 2 or
more sixes.

b) If you are given $10 whenever 2 or more sixes occur, how much should
you pay each time you play this 5 roll game in order for it to be fair?

5.2  Four sets of tennis are played by two evenly matched players. Is the set
score more likely to be 2-2 or 3-1 when they finish? Justify your answer
mathematically and be sure to discuss what simplifying assumptions you
make to deal with the problem mathematically. Are your assumptions
realistic?

5.3 Chapter 1 quotes a passage from Dostoyevsky’s The Gambler in which a
roulette player observes that throughout the previous day zero came up
only once on a particular wheel. Recall that p(zero) = 1/37 on a
European wheel and assume for this problem that a wheel is spun exactly
370 times a day.
a) Using the binomial distribution, write an expression for the probability
of 1 or fewer zeros in a given day’s play of a European roulette
wheel. Given that (36/37)%%~ .00004066, show that the value of this
expression is .000446.

b) Use the normal approximation to the binomial distribution and Table
14 to estimate the probability of obtaining 1 or fewer zeros in a given
day’s play. Explain why this answer differs from the true value given in a).

54 Consider a game with an even money payoff and a probability p of
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winning each play of the game. Suppose the game is to be played n
times. Use the formula for Z to prove that p(ending ahead $10 using $1
bets) = p(ending ahead $50 using $5 bets).

a) Use the normal approximation to the binomial distribution and Table
14 to check each of the following entries in Table 15:
(i) p(ending ahead 0 or more dollars after 100 even money $1 craps
bets) = 48.
(ii) p(ending behind 20 or more dollars after 500 roulette bets of $1 at
8 t0 1) = .56.

b) Explain why the entries in each row of Table 15 do not add up to 1.
Then explain why the two D = 0 entries in each row sometimes add to 1
(as in Keno and 8 to 1 roulette bets), but usually do not.

¢) Explain how Table 15 can be used to determine p(ending up exactly
even) and obtain this probability for

(i) 100 bets in a fair game and even money.

(ii) 50 bets at 8 to 1 in roulette.

Suppose the doubling Martingale system described on pp. 78-79 is to be
applied on an even money bet having probability p of success and
q = 1 — p of failure. Suppose also that you plan to start betting at 1 unit,
that you plan to quit after your first win in order to “go home a winner”,
and that you cannot absorb more than » consecutive losses.

a) Prove that the expectation for the total amount you will bet is
p+3pq+Tpg®+ 15p@° + - - + (2" — pg"~ '+ (2" — 1)q".

b) Show that the above amount simplifies to (1 — 2"¢")/(1 — 24). Hint:
Substitute 1 — ¢ for p, then simplify and sum a geometric progression.

¢) Conclude that, even though your probability of “going home a winner”
is 1 — @", your expected winnings per unit bet (i.e., expected winnings +
expected total bet) are 1 — 24, precisely what it is for a single 1 unit bet
in this game.
Consider the simple cancellation system described earlier. Suppose we
start with s numbers to be cancelled and a conveniently large amount of
cash. Let w(n) and /(n) be the number of wins and losses in the first »
trials. (Thus w(n) + I(n) = n.)
a) Show that play terminates as soon as
s+ 1(n)

7 -
b) Show that play will eventually terminate if we assume that

w(n) >

w(n) _ 1
I(n) >—2-+E for all n,
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where E is any positive constant. This says in particular that success must
result if, as the number of bets gets larger and larger, the ratio w// has a
limit exceeding 1/2.

You have seen 12 cards from a 52 card blackjack deck. The cards seen
are the dealer’s ace now showing, 4 face cards (10, J, Q or K), and 7 other
low cards (9 or lower).

a) Is insurance a good bet in this situation? Explain by computing the
expectation on a $1 insurance bet.

b) Suppose you already have a blackjack (with your face card and ace
included among the 12 cards you have seen) and make an initial $2 bet.
Compute your expectation on this hand with a $1 insurance bet and then
without an insurance bet. Comment on your results. Note: If you have
blackjack but the dealer does not, you win $3 for every $2 wagered. If
both you and the dealer have blackjacks, then your wager is returned
without profit.

Assume that when a blackjack deck is “unfavorable” your probability of
winning a hand is .48, and that when the deck is “favorable” your
probability of winning a hand is .54. Suppose further that you bet $1
whenever the deck is unfavorable and $5 when it is favorable. Finally,
suppose p(deck favorable) = 1/4 and p(deck unfavorable) = 3/4. Also
ignore increased winning (3:2 odds) on blackjacks and ignore the
advantages of doubling down and splitting pairs.

a) Compute the mathematical expectation per $1 wagered (i.e., expected
winnings + expected bet) in the above situation, and compute the house
edge. You will need to show that your expected bet on each hand is $2.

b) Discuss ways in which the above assumptions are unreasonable. Does
the unreasonableness invalidate the point illustrated by a)?

The Resorts International Casino in Atlantic City allows an added option
in blackjack known as surrender. A player may surrender after inspecting
his first two cards and the dealer’s “up” card, in which case he withdraws
half of his bet and gives the other half to the house. Let p be the player’s
probability of winning the hand at the time when he must decide whether
or not to surrender. For simplicity, ignore the possibility of ties.

a) Compute for a $2 bet the player’s X(surrender) and X(don’t surrender).
Do the same for a bet of r dollars.

b) Conclude that, assuming p can be accurately estimated or computed,
surrender is a mathematically wise course of action only when p < 1/4.



CHAPTER 6

Elementary Game Theory

What is game theory?

In the preceding chapters we have considered a variety of specific
games and the specialized reasoning that goes with the analysis of each.
Many of the games discussed, including all of the casino games, involve
a single player pitted against a randomizing device. These are pic-
turesquely referred to as “games against nature.” The subject of game
theory sheds light on such games, but derives its main thrust from
contests involving two or more self-maximizing players each having a
variety of choices and often conflicting interests. Our development will
just scratch the surface of the formal “Theory of Games” which sprang
almost full blown from the minds of mathematician John von Neumann
and economist Oscar Morgenstern. Since the appearance of their book
Theory of Games and Economic Behavior, game theory has had
tremendous impact upon quantitative social science and a most interest-
ing history. Hailed after this book’s publication in 1944 as the long
awaited conceptual framework which any real (deductive) science needs,
the theory was expected to do for the social sciences (primarily econom-
ics, political science and psychology) what calculus did for the physical
sciences. Game theory study and research was encouraged, embraced,
and generously funded; but interacting groups of people do not behave
like atoms, molecules, or even billiard balls. Inevitably, after so much
initial enthusiasm, disillusionment set in, fuelled by game theory’s
excessive claims, overquantification and dehumanization of real life
situations, and overidentification with military problems. Since the early
1970’s a happy equilibrium has been reached, and game theory is
enjoying a revival in mathematics and the social sciences.

The abstract entities studied in game theory come in various sizes and
forms. In terms of the players the games can be 2-person or n-person
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(n > 3) with payoffs having zero sum or nonzero sum. For purposes of
analysis, games can be described in extensive form, normal form, and
characteristic function form. One of our goals in this chapter will be to
define and explain these various types of abstract games. This is done
by concentrating primarily on the strategic analysis involved in the
2-person theory. We complete the chapter by touching lightly upon the
rich theory of n-person games, considering some aspects of how power
might be modeled and computed in certain group voting situations.

The reader will soon realize that, despite the beautiful and very
general reasoning employed in game theory, the actual examples which
can be feasibly considered are a far cry from most “real” games.
Indeed, game theory applies to actual game playing in much the same
way as probability and expectation theory apply to complex gambling
situations (perhaps even less so). The primary value of game theory is
that it lays bare the nature of interpersonal cooperation, competition,
and conflict, giving treasured insights into the elusive question of what
constitutes rational thought and behavior.

Games in extensive form

By a game in this chapter we shall mean the specification of a set of
players, rules for playing the game, and an assignment of payoffs or
utilities to all possible endings resulting from the various actions of the
players. In this section we will be more specific, requiring the rules to
specify the order and consequence of moves for the various players, how
the game ends, and who gets what under the various endings. Games
described by such detailed, move-by-move information are said to be in
extensive form.

Many games, backgammon being an excellent example, also depend
upon results of a randomizing device. Such games can be viewed as
having an additional player, called chance, with its moves and their
consequences specified just as for the other players. Analysis of such
games requires, in addition to the techniques to be presented in this
chapter, repeated probability and expectation calculations of the type
considered in earlier chapters. In order to concentrate on new ideas, we
will not discuss games with chance moves any further.

Before making further definitions we consider a very simple example:
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The game of Nonsense: In the figure on p. 87 player A first chooses an
interior triangle (1, 2, or 3), and then player B chooses one of the
remaining two triangles. Player A must then choose the last triangle.
The payoff to each player is simply the sum of the triangle numbers
chosen by that player.

It is obvious what should happen in this game, but to illustrate where
we are headed we analyze all possible ways this game could be played
out. Our vehicle for this analysis is the game tree, which graphically
illustrates all possible moves at each stage of the game.

START

A’s move

B’s move

A’s move

Payoffs to A,B 4,2 3,3 5,1 33 5,1 4,2

The starting node or root of the tree branches downward (the way
trees often grow in mathematics) into three edges, indicating the three
moves available to A at this stage. For each of these moves B has two
options. After A’s forced second move, the game ends. We see from the
tree that there are 6 possible ways for a game of Nonsense to be played
out. The 6 pairs of payoffs are indicated below the extremities of the
tree.

By working backwards up the tree, we can find the best move for
each player at any given turn. Player A’s second turn leaves no choice,
but B can see by looking at the payoffs that he should always choose
the right branch for his move. Player A, also able to see and reason that
B should do this, can use the tree to determine what his best opening
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move will be—clearly the tree’s initial right hand branch corresponding
to a choice of triangle 3.

We now introduce the important concept of a strategy for a player in
a game. Intuitively, a strategy for a player consists of a complete
specification, in advance, of what he will do at every node of the tree
where he has to make a choice. Thus player A has 3 possible strategies
in Nonsense (his second move requires no specification). We denote the
3 strategies for player A by A, A,, and A,, where the subscript in this
case denotes the triangle initially chosen. Player B has 8 different
strategies, which we list in a shorthand code to be explained below.

B;: Al=B2; A2 =>Bl1; A3 =Bl
B,: Al=B2; A2=Bl; A3=B2
B,: Al=B2; A2 =B3; A3 =Bl
B,: Al =B2; A2 = B3; A3 =B2
Bs: Al=>B3; A2 =Bl; A3=Bl
Bs: Al=B3; A2=Bl; A3=B2
B;: Al=B3; A2=B3; A3 =Bl
Bg: Al=B3; A2 = B3; A3=B2

Each strategy has three specifications. Thus Al = B2 tells B’s response
(triangle 2) to A’s initial choice (triangle 1). Strategy B,, for instance,
requires that player B choose the next triangle in a clockwise direction
from the one chosen by A. Clearly By is the best or optimal strategy for
B, but we stress that the term strategy alone does not carry with it any
assumptions about whether it is wise or foolish.

We mention an added subtlety which can arise in constructing and
interpreting the game tree for certain games in extensive form. If players
reveal their moves or decisions simultaneously, this may not be reflected
in the top to bottom ordering of a game tree unless added designations
are made. Consider the game of matching pennies, in which player A
secretly selects “head” or “tail” and player B must guess (match) A’s
selection to win. If we describe the game tree by the diagram on p. 90
the impression might be created that B could observe A’s move, leading
to an obvious strategy for B. In general, suppose it is a player’s move,
and he does not know exactly where he is in the game tree, but only that
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A’s move

B’s move

B wins A wins A wins B wins

he is at one of the nodes of a set S. Then we lump the nodes of §
together by enclosing them with a dotted oval. Such a set is called an
information set. To extend our notion of a player strategy to this
situation, the player must specify, in advance, one move for each of his
information sets in the game tree. Games having trees for which each
node is a separate information set (so no identification is necessary) are
called games of perfect information. A bit of thought should make it clear
that chess and backgammon are in this category, while poker and bridge
are not.

At the risk of dragging out this extensive discussion of game trees, we
briefly consider the shape of the tree for the game of Tic Tac Toe. If we
ignore symmetry, the game tree starts out as indicated in Figure 5 (“X”
is the player going first). It should be apparent from the complexity of
the Tic Tac Toe tree that description and treatment of particular games
in extensive form is often not feasible. Thus even a game as simple as
Tic Tac Toe (intelligent ten year olds usually intuit optimal strategies
for “X” and “0” which lead to a forced draw) can be played out in a
vast number of ways and with a dizzying number of strategies (see
Exercise 6.2).

The number of possible plays and strategies for more “serious” games
such as checkers and chess is truly astounding. We shall remark on this
further in the chapter’s final section, where games trees will be used to
illustrate how computers can be programmed to learn from experience.
For now we focus on a second and often more workable formulation of
games.
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Two person games in normal form

In this section we restrict attention to games involving just 2 players
and assume that the possible strategies for each player have been
enumerated. It is important to note that such an enumeration is always
possible in theory, but the overwhelming proliferation of strategies for
even the simplest games (recall the Tic Tac Toe discussion) imposes
severe limitations on the class of games that can be handled this way in
practice.

In a game with no chance moves, once the two players choose
particular strategies, the play is completely determined. We have al-
ready assumed that this play results in a certain numerical utility or
payoff to each player. In most common games this utility might be the
value of winning to the winner and the (negative) value of losing to the
loser. Here we allow complete freedom as to what these utilities might
be (we can have outcomes in which both players gain, both players lose,
etc.), but we assume complete information for each player about what
the two utilities for each outcome are. We avoid some very fundamental
questions of how utilities can be defined.

Much of the above should become clearer through some examples.
We give one example which derives from a game given earlier in
extensive form. Consider the Nonsense game introduced in the previous
section. To make the game more interesting we change it by redefining
the utilities or payoffs for the various outcomes as follows:

Let x be the number on A’s first triangle and y the number on B’s
triangle. Then

PayofftoA=x—%, Payoff to B = (= 1)**?y

i.e. payoff toBis y if x + y is even, —y otherwise. Recall from p. 89
that A has 3 strategies A}, A,, A, while B has 8 strategies B, B,,..., B,.
We construct a rectangular array with 3 rows, 8 columns (called the
payoff matrix) as shown below.

Game 1 (Modified Nonsense)
B, B, B, B, B, B B, By

-2 -2 -2 -2 3 3 3 3
A,
-5 -5 -5 -5 0 0 0 0
“1N -1 NN I NE N NEE
A,
-1 -1 1 1 -1 -1 1 1
1 -2 1 -2 1 -2 1 -2
A,
0 1.5 0 1.5 0 1.5 0 1.5
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To see how the entries in the payoff matrix for Game 1 were arrived
at, we consider for example the A, B, square. Suppose A plays strategy
A, and B plays strategy B,. From our earlier description of the
strategies, this means A first chooses triangle 2. Strategy B; then
requires B to choose triangle 3 since A chose triangle 2. Thus, x = 2 and
»y = 3, so we see from our payoff rule that A wins 2 — (3/3) = 1 unit
and B wins (—1)>*33 = —3 (i.e., B loses 3). We write A’s payoff below,
B’s payoff above the diagonal line in the square formed by the intersec-
tion of row A, and column B,. The other 23 possible payoff pairs may
be verified similarly by repeated reference to the description of strate-
gies A, and B, listed earlier. This matrix constitutes our description in
normal form of the game of Modified Nonsense.

Our subsequent examples are games already in normal form; we
ignore their origins (if any) in terms of game rules or extensive form. We
give one more preliminary example before beginning the general analy-
sis of games in normal form. Consider Game 2 as defined below.

Game 2
B, B, B,
AN -2 5
Ay
4 2 -5
2N -4\ -3
A,
-2 4 3
3 -6 -2
A
-3 6 2
-3 8 6
A,
3 -8 -6

Here A has 4 strategies and B has 3. A typical play might result from A
selecting strategy A, and B selecting strategy B, in which case A wins 3
units and B loses 3 units. The obvious special nature of this example will
be the object for analysis in the next section.

Zero-sum games

The two-person situation described by Game 2 has the special but
frequently encountered property that for each pair of opposing strate-
gies the sum of the payoffs to the players is zero. Such games are called,
naturally enough, zero-sum games. They constitute an important special
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case of the general two-person theory. In this zero-sum situation it is

unnecessary to write the payoffs for both players. We adopt the stan-

dard convention in the zero-sum case of only writing the payoffs to the

row player (in our case A). We remind the reader that the payoffs to the

column player are then the negatives of these numbers, and that

forgetting this (which is easy to do) will result in incorrect analysis.
Employing this convention, Game 2 becomes

Game 2
B, B, B
Al 4 2|-5
A,|l-2] 4| 3
A;|-3| 6] 2
A, 3[-8|-6

From this matrix we see directly that strategy A, is never as good as
strategy A, (no matter what B does). Since A is assumed to be a rational
player, he may as well delete A, from his list of strategies. Thus the
game reduces to

B, B, B
A | 4] 2]-5
A, -2 4| 3
Ay -3 6] 2

Now player B, being every bit as rational as A, also sees that A will
never play strategy A,. Thus the juicy 8 payoff of A B, is no longer
available to him. From the reduced version of Game 2 it is now
apparent that B, is inferior to B;, so we delete B, from the set of B’s
viable strategy options. Continuing this reasoning for A it can be seen
that after B, is deleted, A, is now inferior to A,. The reader should
check this, as we will henceforth usually jump directly to the final
reduced form. Thus we are left with

Reduced game 2
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The reader should check that no further reduction is possible.

For one more example, consider

Game 3
B, B
A 8|-4
A, 4 1

Here A examines his strategies and sees that neither appears con-
sistently more rewarding than the other. On the other hand, B sees that
B, is always preferable to B, (recall the need to negate the payoffs).
Accordingly the game reduces to

B,
A -4
Al ®

Being rational, A makes the same deductions as B and therefore always
prefers strategy A ,. The conclusion, then, is that rational play will lead
to the A,B, strategy pair, with A gaining and B losing 1 unit. By
deviating from the B, strategy, B will be worse off. Though A could play
A, in the hope of B’s foolishly or accidently playing B,, this would not
be rational or prudent.

We formalize the reasoning in the last several paragraphs as follows.
For any player C (either A or B, but remember to negate payoffs for B)
with strategies C,,C,,...,C

C, is dominated by C; if
each payoff in C; < the corresponding payoff in C;
and
some payoff in C; < the corresponding payoff in C,.
Our analysis so far has consisted of deleting all dominated strategies

from the game for either player, repeating the search for dominated
strategies after each deletion. The end result of this process leaves the
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game in reduced form. If each player in the reduced form has only a
single strategy or a set of identical strategies, we say the game has a pure
strategy solution. Each player is then said to have an optimal pure
strategy.

There is another procedure for zero sum games which, if successful,
leads to an even more dramatic simplification. Again we start with an
<€xample.

Game 4
B, B B
Al -5 11 -1
A, —2 8 -1
A;| -3 | -4 14

It should be noted first that there are no dominated strategies for
either player. Before abandoning hope for simplification, we engage in
the following somewhat elusive but highly compelling reasoning. Player
A, reasoning defensively, considers the worst that might happen. A’s
worst or minimum payoffs are —7 if A, is played, —2 if A, is played,
and —4 if A, is played. By computing the maximum of these minima
(—2) and choosing a strategy which yields this maximum (A ,), player A
can guarantee a payoff at least as good as this maximum. Naturally B
can reason similarly. Negating payoffs first, we see that 2 is the maxi-
mum of B’s minima (2, — 11, - 14), so B’s defensive strategy is B,. It is
of great significance that the pair A,B, gives precisely the defensive
results to which both players were led. Because of this the strategy pair
A,B, can be seen to have high stability in that, if either player deviates
from it and the other does not, the deviating player will suffer. Further-
more, if each player deviates from his respective strategy in A,B,, then
one of the players must gain by returning to it. The reader should check
that this stability results because

MAXimum (A’s MINima) = —MAXimum (B’s MINima).

If a game has the property that A’s maximin = —B’s maximin, then
any pair of these maximin strategies is called a saddle point for the game.
It follows that a payoff will correspond to a saddle point precisely when
this payoff is simultaneously a minimum value in its row and a maxi-
mum value in its column. Game 4 has the unique saddle point A,B,. If
one is able to spot a payoff value in the normal form with this property,
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the more elaborate maximin procedure will be unnecessary. The maxi-
min procedure is the only reliable way, however, to ensure that a saddle
point is not overlooked. Generally a game can have more than one
saddle point, but it is easy to check that all saddle points will give rise to
the same payoff.

Before leaping to unfounded conclusions, let us return to Game 2
(analysis with Reduced Game 2 will yield equivalent conclusions). In
Game 2 we have:

A’s maximin = MAX{ -5, -2, —3, —8} = —2 by strategy A,
B’s maximin = MAX{—4, —6, —3} = —3 by strategy B,.

Note that these maximin values do not sum to 0 and hence cannot be
jointly achieved by any strategy pair. The stability argument that
worked so well for Game 4 fails. There is no saddle point here. We
summarize:

Maximin principle for pure strategies: In any two-person zero-sum
game, if A’s maximin = —B’s maximin, then any strategy pair which
gives rise to this joint payoff is a saddle point or solution. Any such
solution pair can be used by rational players as pure strategies for the
game.

If a zero-sum two-person game has a rational pure strategy solution,
the maximin procedure will find it. In considering a zero-sum two-person
game for analysis we should

1. try to find a saddle point by inspection or by applying the maximin
procedure. If a saddle point exists we are done. Otherwise,

2. put the game in reduced form by repeated deletion of dominated
strategies. Then,

3. try to find a mixed strategy solution.

We now discuss the meaning of step 3 and describe a procedure for
implementing this step in the special case where the reduced game has
only 2 strategies for each player. Consider Reduced Game 2 which
would arise from Game 2 after failure of step 1 and reduction by step 2.
We will show that each player should, in successive plays of Reduced
Game 2, follow an overall strategy of varying or mixing the given
strategies for the game. It is clear that if strategies from game to game
are to be mixed, this should be done in some “random” fashion, since
otherwise the rational opponent could notice a pattern and exploit it.
Let

P = A’s probability of playing strategy A,
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and
q = B’s probability of playing strategy B,.

Then the following pair of tables gives the probabilities and correspond-
ing payoffs for each of the 4 possible outcomes of Reduced Game 2.

B, B, B, B,
(9) 1-q9)
Ay(p) rq p(1—¢q) A, 4| -5
A1-p)|(1=p)g|(Q—=pX1—2q) A,| -2| 3

It follows directly from the expectation definition of Chapter 2 that

X(player A) = pq(4) + p(1 — ¢)(—5) + (1 —p)q(-2)

+ (1 -p)1 - 9)(3).

We now perform some algebra on this expectation to put it in a very
useful form.

X(player A) = 4pg — 5(1 — ) — 2(1 = p)q + 3(1 —p)(1 - q)
= 14pg — 8p — 5¢ + 3 [ Collecting like terms]
=p(l4g—8) — 59+ 3
= 14p(qg—4/7)—5¢+3
[Factoring 14 from 14 g — 8]
14p(q—4/7) — 5(¢9 — 4/7) + 1/7
[Forcing a (¢ — 4/7) term and adjusting ]
= (g —4/7)(14p — 5) + 1/7 [Factoring (¢ — 4/7)]
X(A)=14(g —4/7)(p - 5/14) + 1/7
[Factoring 14 from 14p — 5].

]

The reasoning now goes as follows. Player A can guarantee himself a
1/7 payoff by letting p = 5/14 (he has no control over g, but this
“zeros” ¢ out). What if he is tempted to deviate from 5/14, say by
letting p exceed 5/14? Then player B, a rational fellow, can discover
over a series of games that p >5/14 or p —5/14 > 0. Using the
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equation for X(player A), B can now make X(A) < 1/7. His best
approach would be to set ¢ = 0 (i.e. always play B,), in which case the
negative term 14(—4/7)(p — 5/14) would lower A’s expectation below
1/7. Thus A would be unwise to let p > 5/14 and, by an obvious
analogous argument, would also be unwise to let p < 5/14. In summary,
A can do no better than to vary strategies randomly with p = 5/14.
Similarly, B should use g = 4/7 to prevent A from making X(A) > 1/7.
(The whole argument is somewhat reminiscent of our maximin analysis).
The expected payoff for these mixed strategies is 1/7 for A and —1/7
for B. A careful study of this example should serve as a model for the
mixed strategy procedure (step 3) in the reduced 2 by 2 strategy case.
Exercise 6.6 considers the general 2 by 2 situation.

We conclude this section by stating without proof the deep and
beautiful theorem that every 2-person zero-sum game in normal form
has a solution in either pure or mixed strategies. We have seen how such
solutions can be obtained through saddle points or (when each person
has only 2 strategies) mixed strategy probability calculations. Computa-
tion of mixed strategy solutions when players have more than two
strategies requires more sophisticated mathematical techniques from a
branch of mathematics called linear programming.

Nonzero-sum games and the prisoners’ dilemma

A game for which the payoffs to the various players do not always
sum to zero is called a nonzero-sum game. In this section we briefly
consider the two-person nonzero-sum game in normal form. Such games
have a rich mathematical theory, but are also subject to considerable
philosophical discussion and varied interpretation. After looking quickly
at one solution concept for certain of these games, we turn to our main
objective, an exposition of the famous Prisoners’ Dilemma.

Recall Game 1, which arose from our Game of Nonsense. If we
employ the common sense deletion of dominated strategy procedure for
player B, it is seen that strategy B; is the lone viable strategy remaining
for B, giving the reduced matrix

BS
3
A,
0
-1
A
-1
1
Ay
0
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Player A is then indifferent between A; and A, as far as his best payoff
(0) is concerned. What might he do? If he is altruistic he may choose
A,, allowing B to gain 3 units. If he has a sadistic nature he may choose
Aj;, holding B’s payoff to 1 unit at no gain to himself. A little thought
suggests another very real option. Player A might politely suggest to B
that he is prepared to play A,, but only if B makes it worth his while
with a side payment of 1 unit. Such gentle blackmail may or may not pay
off, but it does show the added complexity and ambiguity of the
nonzero-sum situation. One can be led very quickly into considering
concepts such as negotiable versus nonnegotiable games, games with
and without side payments, bluffing, etc.

Returning to the original Game 1, we can even throw the cherished
idea of deleting dominated strategies into question. Indeed, A, is
dominated by A, so deletion would suggest that only A , could ever be
of interest to A. This would result in a pure A,B; strategy outcome for
the game, not even allowing A’s added bargaining strength (blackmail)
considered above to surface. The moral we propose is that care and
skepticism must be exercised in presenting and analyzing “rational”
arguments about nonzero-sum games. We bring this point home with
the following hypothetical but, as we shall see, not uncommon game
situation.

Two alleged burglars (A and B) are spotted and apprehended running
away from the Sparkle Jewelry Store after its burglar alarm has been
tripped. Jewelry is found scattered around the store. A search of the
suspects turns up no jewelry, but each is found to be carrying a gun.
The suspects are then imprisoned in separate interrogation rooms and
each is urged to confess to the attempted burglary. Being rational,
knowledgeable, and like-minded partners in crime, each evaluates the
situation as follows:

a) If both confess they will each get moderate prison sentences (judged
by each as a payoff of —4 units).

b) If both refuse to confess they each will get light sentences for
carrying concealed weapons—no burglary charge would stick
(judged by each as a payoff of 1 unit).

c¢) If one confesses and the other does not, the confessor, having
turned state’s evidence, will be set free; the silent one will get a
heavy prison sentence, taking the rap for the burglary (judged by
each as payoffs of 10 to the confessor and —6 to the “sucker”).

They realize then that they each have two strategies (1 = confess,
2 = don’t confess) in the following nonzero-sum game.
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B, B
-4\ -6
Al
-4 10
10 1
A,
-6 1

How should the prisoners deal with their dilemma?

If a deletion of dominated strategies is employed, both players arrive
at their confess strategies (resulting in a payoff of —4 to each). This
strategy pair (A;B;) has the compelling maximin stability discussed
earlier in that if either player deviates from it on his own, he will suffer.
Also, if the players are at any other strategy pair (even (A,B,)), at least
one player can improve his payoff by unilaterally switching to strategy 1.
All indications seem to point to A,;B, as the inevitable and “rational”
end result. But look again! If the players could only cooperate or read
each other’s minds, would they not readily uphold the “honor among
thieves”, settling on A,B, and avoiding the unpleasant A;B, outcome?
Possibly so, but a little thought suggests that this prospect might be
short-lived as each player eyes the possibility of complete freedom
provided by being the sole confessor. Each player, suspecting the other,
thinking of himself, and being unable to resist the lure of his dominating
confession strategy, would lead the pair right back to where they did not
especially want to be.

The above is one version of the Prisoners’ Dilemma, which no amount
of philosophical or game-theoretic analysis has yet resolved to the
satisfaction of all. Before examining it a bit further we comment that it
can be used as a striking though rather oversimplified model of the arms
race. Here the players are a pair of military superpowers (with no *“third
world” competition). Each must decide yearly whether to curtail arma-
ment spending or to increase it. If both powers increase (A,B,) they
have gained relatively little militarily and are poorer financially. If both
curtail spending (A,B,) then they maintain their arms balance and can
use the money saved for more worthwhile purposes, leaving themselves
(and the rest of the world) better off. In the remaining two cases the
power increasing armaments gains military superiority and a large
positive payoff despite the cost, while the “dove” power loses the arms
race and a sizable payoff in prestige and power balance. Similar analysis
can be given to model or explain price wars, ecologically unsound
societal behavior, and other “selfish” action. We thus have a game-
theoretic explanation of why irrational group behavior can be expected
in certain situations.
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We now consider what might happen in repeated play of a prisoners’
dilemma type game (just as the arms spending game gets replayed every
year). It would seem reasonable that the players, looking ahead to their
overall payoff over the series of replays, would now be able to come to
some mutually advantageous agreement. To be specific, imagine that
the players in a prisoners’ dilemma game know in advance that the
game will be played precisely 15 times. Then perhaps at the outset (if
preliminary discussion were allowed) or after a few games (if it were
not) the players would see that it was in their individual and mutual
long-term best interest to cooperate (i.e., play strategy 2). Being rational
though, each would think ahead to the 15th and final game. In this
game, the question of future overall payoffs is no longer an issue, so
players will once again revert to their dominant strategy behavior.
Having no control over what the opponent will do, each player is better
off playing strategy 1; so cooperation on game 15 cannot be expected.
What about the 14th game? With the 15th game “up for grabs™ this 14th
game is now effectively the last game in which cooperation might be
reasonable. Again each player reasons that there is little point in
unilaterally playing strategy 2. Of course the regression continues until
even the first game of any finite series provides no incentive for
cooperation. We leave to the reader the pleasure of contemplating what
might happen in a game with potential for infinite replay and how a
player might increase overall payoffs by “playing dumb” or “acciden-
tally” lapsing into strategy 1 upon occasion.

Simple n-Person Games

Our approach to game theory so far has concentrated on games
involving only two players. If more than two players are involved in a
game, several new difficulties become apparent. Not only does the
already substantial complexity of nontrivial games in extensive and
normal form increase considerably, but the question of whether and
how players may cooperate and band together in coalitions becomes a
major issue. Our earlier response to the complexity problem was to
bypass the intricacies of the tree structure of a game by directly
considering strategies and the normal form of a game. We carry this one
step further now by replacing the enumeration of individual strategies
by information as to what the various subsets of players can gain by
forming coalitions. These are the so-called cooperative games in char-
acteristic function form. We consider the even more special case of simple
games where only two payoffs are possible, called winning and losing;
and it must be specified in advance precisely which coalitions can
achieve the winning payoff.
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The most familiar game of the type described above is the n-person
majority game M,, where more than half the players (eligible voters at a
meeting) must vote in favor of something before it can win (pass). There
are two useful ways to describe this game M,, and we shall need them
both. Consider for example the 5-person majority game M,. It can be
represented as the weighted voting game [3;1, 1, 1, 1, 1], where, in general,
[g; Wy, w3, ..., w,] is defined as follows: The subscript n is the number of
players. The number ¢ is the quota for the game, while the numbers
Wy Wy, ..., W, are the weights of the players. By definition, a set S
of players is a winning coalition of [q; w;,w,,...,w,] if and only if the
sum of the weights is at least ¢. Clearly the winning coalitions of M,
(where each player has weight 1) are just the subsets of players with
3 or more members. Thus, the simple game representation of Mj,
obtained by listing all its winning coalitions, is

{ABC, ABD,...,CDE, ABCD,...,BCDE, ABCDE},

where we have denoted the five players by A, B, C, D, E. We leave it to
the reader to check, using the combination ideas of Chapter 4, that there
are Cs3+ Cs 4+ C5 5= 16 winning coalitions for this game.

We give several more examples of games in weighted voting and
simple (winning coalition) forms. Imagine a situation with one “big”
player A and two “little” players C and D, where player A requires the
help of either C or D (or both) to achieve “success.” Players C and D
cannot succeed on their own, but they do have some clout in the sense
that they can join to prevent A from achieving success. The resulting
game BL? can be defined as follows:

Weighted voting form: BL? = [3;2,1,1]

Simple form: BL? = {AC, AD, ACD}.

The United Nations Security Council has at any given time the five “big
powers” and ten other nations as its voting membership. Passage of a
resolution (assuming no abstentions) requires support of all five big
powers and at least four of the others. There are many ways to choose
weights and a quota to represent this situation and we give one of them.

Weighted Voting Game:
UNSC =[39;7,7,7,7,7,1,1,1,1,1,1,1,1,1,1].
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It should be clear that the full listing of winning coalitions of UNSC
in simple form is exceedingly tedious. Indeed, the number of minimal (9
member) winning coalitions is already C,q 4 = 1260.

The preceding example shows the economy of representing a simple
game in a weighted voting formulation when possible. The following
example gives a collection of winning coalitions whose game cannot be
described by means of quotas and weights (see Exercise 6.8). The
winning coalitions appear in dictionary order.

Simple Game:

SG = {AB, ABC, ABD, ABE, ABCD, ABCE, ABDE, ABCDE,
ACD,ACDE, BCDE, CDE}.

We shall always assume that any coalition containing a winning
coalition is also winning. In this case, simple games can be described by
listing only the minimal winning coalitions (MWC’s). These are coalitions
which are winning, but contain no smaller winning coalition. The
MWC’s for the above simple game have been set in bold type. The
minimal winning coalitions will play an important role in our forthcom-
ing definition for the power of a player in a simple game.

Power Indices

Our goal for the two person games considered earlier was to de-
termine what moves and strategies players should pursue under assump-
tions of rational thought and behavior. Even for the simple class of
n-person games we are considering, such a task is often not well-defined
and almost always beyond our capabilities. Instead, game theorists seek
to determine a value for the n-person game representing how rational
players might apportion the total payoff available in the game. For a
simple game this value can be interpreted as the percentage of power
each person in the game might possess. Accordingly, we define a power
index on the class of simple n-person games as a procedure which
assigns, for each such game, a number to each player representing the
player’s power in the game. Since the numbers are percentages, we
require that they sum to one. In symbols, each simple n-person game G
is assigned a power index p(G) = (p,,P;,...,P,) Where p, = the power
of player i, and p,+ p,+--- +p,= 1.

Power indices are not only an interesting theoretical idea, but they
have been used in law courts to settle disputes involving fair representa-
tion in voting bodies. There are several well established power indices in
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game theory, most notably the original index defined by game theorist
Lloyd Shapley and economist Martin Shubik and a later index devel-
oped by the lawyer John Banzhaf. In our brief development we use a
recent power index developed by the author in collaboration with
political scientist John Deegan, Jr. The decision to use this index is
based not only on personal bias, but also on the fact that computation
of the index values is more straightforward and illustrative of some of
the mathematics developed in earlier chapters.

Consider the game BL? with players A, C, and D as introduced in the
preceding section. It is easy to check that there are precisely two
MWC’s in BL?, namely AC and AD. Let us assume that only MWC’s
are allowed to form, that they form with equal probability (in this case
each forms with probability 1/2), and that players belonging to the
MWC which forms divide the 1 unit payoff equally. Then the expecta-
tion for each player can be found by what are now, hopefully, familiar
procedures. It is this expectation which we use to define the power of a
player. For the game BL? we obtain the following results:

Pa = X(player A)
= p(AC forming)(A’s share of AC)

+ p(AD forming)(A’s share of AD)
11 11 1

=32%t32%7%

Similarly,
Pc = X(player C) = p(AC forming)(C’s share of AC) = % . % = %
. . 1 1 1
Pp = X(player D) = p(AD forming)(D’s share of AD) = 3'2=%"

Thus our power index applied to BL? gives p(BL?) = (3, 1, 3).

Before considering more complex examples, we break the power
index computation into three steps. To obtain the power p, of a player i
in a simple game G:

(1) Compute the number g of MWC’s and list or describe them.

(2) For each MWC containing player i, compute the reciprocal of the
number of players in it.

(3) Add all the reciprocals obtained in step (2) and divide the total by
g—this gives the power p; of player i in the game G.
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Applying the above method to the simple game SG on page 104, we
recall that the MWC’s are {AB, ACD, CDE}, so g = 3. Thus we obtain

_its_5 _i_1 _3*ts_2
PA= 3 18 PB=3 % Pc=737 %9
_3ts_2 _3_1
pD 3 _9 pE 3—9

Thus p(SG) = (5/18,1/6,2/9,2/9,1/9); it should be noted that the
individual powers sum to unity.

As our last example we consider a simplified version of a political
game familiar to most American citizens, the voting procedure for
enactment of laws by the United States Congress. The Congress has 435
representatives and essentially 101 “senators” (100 real senators plus the
Vice President, who may cast a deciding vote whenever the senate is
deadlocked at 50 to 50). Passage of a new law requires “yes” votes from
218 representatives, 51 senators, and the President. (We ignore the
possibility of a congressional veto override here.) Using the absolute
majority rule terminology of the last sections, we see that the congres-
sional game, which we call USA, requires simultaneous winning coali-
tions in M, (the house), M, (the senate), and M, (the President’s
approval).

In preparation for computing the power of the players in USA, we
note that all MWC’s are made up of 218 representatives, 51 “senators,”
and the President. Accordingly, the total number of MWC’s in USA is
obtained using our notation for combinations as g = Cy35 215" Cio1,51-
Every representative r belongs to Cg3,,; house MWC’s and to
Cas,217°Cro1,51 USA MWCs, each of which has 218 + 51 + 1 =270
members. Similarly, each “senator” s belongs to Cyss 213" Cioo,50 USA
MCW’s of size 270. The President belongs to all of the g different
MWC’s. Putting all of this together, we obtain:

1

go ——
_Famo 1
Pre="o =35~ .00370
1 1
= C435,2|8‘C100,50‘FO _ Cxoo,so' 270 =5_1.L~ 00187
: g Cioo,51 101 270~ °
1 1

Casa,217° Cro,51° 270 Cossonr’ 270 218 1
g - Cass, 218 T #3520

pl_ = ~ .00186.
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Since the presidential power value seems much too low, it is ap-
propriate to question our model of power. If we realize that we are
measuring only the power to enact legislation, independent of all the
other kinds of actual and psychological power a President has, the
results may not be totally unreasonable. Other power indices with
different assumptions do give greater power to the President and to
senators, and it seems likely that the index we present is not appropriate
for the U.S. Congress. Nevertheless, it is the ideas and their implementa-
tion rather than political realities that we have worked for here.

Games computers play

Earlier sections of this chapter indicated that the application of
abstract game-theoretic analysis to all but the simplest of games is likely
to leave us hopelessly stuck in a tree or drowning in strategy enumera-
tion. Remarkably, another far more pervasive scientific breakthrough
has paralleled the birth and development of game theory, the phenome-
non of the digital computer. It is interesting to note that von Neumann
made fundamental contributions to both of these seemingly unrelated
fields. Would it not be reasonable to hope that computers might provide
the means for dealing with the computational complexity called for in
the theoretical analysis of games? We briefly consider some general and
specific responses to this question.

The subject of artificial intelligence deals with how and to what extent
computers and other machines can be programmed or constructed to
exhibit “thinking-like” behavior. A major subdivision of the burgeoning
discipline of computer science, artificial intelligence (or Al) relates to
human intelligence in somewhat the way that game theory relates to real
world games. We do not expect to construct or program machines to
think in the same way that human beings do; but by seeing and
thinking about what machines might be made to do, we can raise and
sometimes answer important questions about the nature of thought and
intelligence.

Our goal in this section is much more modest. Using the game tree
ideas of the early parts of this chapter, we shall completely analyze a
fairly simple game called HEXPAWN. Not only will the analysis reveal
optimal strategies for HEXPAWN, but we shall get a glimpse of how
computers can use the game tree to learn from experience.

HEXPAWN is played on a 3 by 3 board, starting with 3 White pawns
and 3 Black pawns as pictured in Figure 6.
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1 2 3
w w w

4 5 6

7 8 9
B B B

Figure 6 Starting positions for HEXPAWN.

The rules for moving and winning are listed below (we assume W
goes first):

¢ Players move alternately, W downward and B upward.

* A player may move 1 space forward if the space is vacant.

* A player may move 1 space diagonally forward if the space is
occupied by an opponent’s pawn. Opponent’s pawn is then removed.

» These are the only legal moves.

A player wins if any of the following conditions hold:

* One of the player’s pawns reaches the opponent’s end of the board.
¢ The opponent is unable to move. (Thus we are not allowing “stale-
mate”.)

At this point we urge the reader to take a brief time out to run
through some practice HEXPAWN games. This will provide facility in
understanding the following tree construction. It should also start the
reader asking that often most crucial of all game questions: “Would I
rather go first or second?”

Before drawing the tree, we formalize a rather intuitive notion of
strategic analysis. Suppose it is player W’s turn to move at a given node
in a tree and all branches lead to a node (position) from which
opponent B can force a win. Then, assuming perfect play, we would say
that B controls or captures the original node. On the other hand, if some
branch from a given node (at W’s turn) leads to a node already
captured by W, then W should capture the given node. These common-
sense observations are schematized in Figure 7.

The first 5 levels of the HEXPAWN game tree are pictured in Figure
8. To prune the tree down to size without losing crucial information, we
only list one branch of any symmetric situation (thus there are two
opening moves indicated instead of three). The labels on the branches
indicate the number on the square moved from followed by the number
moved fo. For symmetrical situations only the least numbered branch is
drawn. The dotted lines beneath the tree indicate that additional parts
of the tree have been omitted. The reader is urged (Exercise 6.11) to
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captured by B

W’s move:

B B B B B B w B B B
Figure 7 Capturing higher level nodes.

check that the symbol (W or B) to the right of each lower level node
correctly indicates the player capturing the node (in accordance with the
rules of Figure 7). It is now easy to complete the upward scan of the
game tree to show that Black (i.e., the player who goes second) captures
the root node, and that Black can therefore always win with careful
(perfect) play. Indeed, the correct play for Black is simply to choose
successive branches down the tree which always join nodes captured by
Black. Perfect play for White in this unfortunate case is to hope for
Black to make an error and then to stick with nodes captured by White.

The ideas described above can be applied in principle to any game of
perfect information in extensive form whose termination rules generate
a tree with finitely many nodes and payoffs of win, lose, or draw. After
extending the capture rules of Figure 7 to the case of draws (Exercise
6.12), we can work our way up the game tree to discover:

a) the optimal moves at each node
b) the player (if any) capturing each node
c) the player (if any) who can win the game with optimal play.

Applying this tree analysis to chess, for instance, we would be able to
discover which of the following statements is true (our “capture” tech-
nique implies that exactly one of them must be true):

1. The White (first) player wins if he plays optimally.
2. The Black (second) player wins if he plays optimally.
3. The game always ends in a draw under optimal play.

As a bonus, the game tree tells us precisely what moves are best at
each stage of the game—it gives us optimal strategies. To implement
this seemingly profound yet obvious result in practice, use of a digital
computer is suggested. This brings us back to the subject of artificial
intelligence.
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We are now prepared to strip away the mystery from the idea that a
computer can learn through experience. It is fairly easy to program a
computer to store and build trees of considerable size and complexity.
In programming a computer to play HEXPAWN legally but randomly
(a reasonably straightforward task) and to build its game tree as it goes
along, the following idea suggests itself. When the computer loses a
game it can mark the last branch it took as a “bad” move. (It could also
flag branches which led to wins as “good” moves, but this is not
necessary.) After losing sufficiently often the computer will be able to
avoid all bad moves, an ultimate goal of learning. If the computer then
goes second in HEXPAWN it will always play perfectly, having learned
all there is to learn. If the computer goes first at this point it will also
have learned—namely that it has only bad moves unless its opponent
makes a mistake. In summary, the computer can learn to play as well as
possible, and it learns most effectively by losing.

If this can be done so easily for HEXPAWN, why not for checkers or
chess? The Tic Tac Toe example suggests the problem for nontrivial
games—their trees grow so large so fast that even the most powerful
computer cannot hope to pursue the tree analysis approach successfully.
Indeed, it has been estimated that to construct the game tree for chess
to 25 levels (corresponding to looking ahead 25 moves—a rather short
game of chess) would require a number of comparisons on the order of
107 (one followed by 75 zeros). Even with a very fast hypothetical
access and comparison time (say a billionth of a second), a 25 level
analysis would require perhaps 10% seconds of computer time. But the
age of the solar system is on the order of 10'® seconds! So much for a
full tree analysis of chess.

Despite this complexity, increasingly successful computer programs
have been written for playing checkers, chess, and other unsolved
games. The methods used combine the speed and unerring patience of
the computer with board position “evaluation functions” and program-
mable strategic principles (heuristics). Computers can now play checkers
as well as the best human players. Increasingly sophisticated chess
programs are raising the level of computer play, though somewhat more
slowly than was predicted 10 years ago. The best chess programs can
now play on a level with highly skilled amateurs, with inroads being
made against lower level experts. One intriguing approach for testing
the sophistication of a complex chess program, scarcely possible with
human players, is to have the computer play games against itself.

Do these intricate and highly specialized programs serve any purpose
beyond the challenge and excitement they provide for the chess en-
thusiast who competes against or writes them? If we view chess (as we
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have viewed game theory) as a model for how the human mind might
operate at its most rational levels, the rewards of an “optimal” or even
expert level chess program might be considerable, yielding deep insights
into the nature of human intelligence.

Exercises

6.1 The game of Direction/Color is played as follows. First, player A chooses
a direction (Left or Right) and announces it to player B. Then player B
chooses a color (Red, White, or Blue). The colors Red, White, and Blue
are assigned point values of 2, 3, and 4 respectively. If A chooses Left
then A pays B the number of dollars then determined by the point value
of B’s color. If A chooses Right, then B pays A the corresponding
amount.

a) Draw the full game tree including payoffs for Direction/Color.

b) Explain why player A has only two strategies and fully describe player
B’s optimal or best strategy.

c) Show that player B has 9 different strategies for the game. [Hint: a

single strategy for B consists of specifying one of 3 color responses for
each of A’s 2 direction choices.]

6.2 Consider a Tic Tac Toe analysis which ignores symmetry and assumes
games are continued until all nine boxes are filled.

a) Show that the number of different games that can be played is
9! = 362,880.

b) Argue that there are 9-72 different strategies in Tic Tac Toe for the
first two moves of the “X” (first) player. [Hint: note that for any opening
move there are 8 responses by the “0” player. Now see Exercise 6.1(c) and
its hint.]

c) Prove that under our assumptions thereare 9-78.58'6.38-6:4 ~] 893.]04!
different strategies for the “X” player.

d) Write an expression for the number of different strategies for the “0”

player.
6.3
B, B, B,
A, -4 6 -6
A, -1 4 3
A, -2 -3 -1

Consider the normal form zero-sum game above.
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a) Argue by eliminating dominated strategies that there is a pure pair of
strategies (one for each player) for this game. Explain what should
happen with rational play, and what payoff will result?

b) Now change the A;B, payoff from —1 to 4. Show that there are no
dominated strategies. Then use maximin arguments to show that a pure
strategy pair still results.

B, B, B, B,
A, -4 3 2
A, | =7 3 3 0
A, 0 -4 2 1
A, 1 -5 3 0

Analyze the zero-sum game above. Determine the best strategy (mixed or
pure) for each player and the expected payoff of the game.

Players A and B are playing a finger throwing game as follows. Each
player simultaneously throws 1 or 2 fingers. Let s denote the total
number of fingers thrown. If s is even, B pays A s dollars. If s is odd, A
pays B s dollars.

a) Construct the game tree for this situation. You will need to identify
one pair of nodes as an information set (why?).

b) Describe the possible strategies for each player and construct the
normal form of the game.

¢) Solve the game, obtaining the appropriate pure or mixed strategies and
the final (expected) payoff.

B, B,
Al a ﬁ
Az Y é

Consider the general 2 by 2 zero-sum normal form game pictured above.

a) Argue that, by relabeling strategies, it can be arranged that the A,B,
payoff is less than or equal to all other payoffs. Conclude from this that
there is no loss of generality in assuming thata < 8, a < v, and a < 8.
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6.8

6.9

6.10
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b) Assuming that payoff a is the smallest payoff (to A) as argued in a),
show that the 2 by 2 game above has a saddle point and pure strategy
solutions for each player unlessa < 8 <y<B or a<8<B<Y.

c) Show that when a<8<y<fB or a<d8< <y, the game
has the following mixed strategy solution:

Player A: (p,1 —p) = ((y — 8)/D,(B — @)/ D)
Player B: (¢,1 — ¢) = (B—8)/D,(y — a)/D)
Expectation for player A = (B8y — 8a)/D

where D = 8 + y — 8 — a. Why don’t these formulas apply to the saddle
point cases considered in b)?

d) Now drop the assumption that « is the smallest payoff. Then show that
there are precisely six other orderings of a, 8, y, & that yield mixed
strategy solutions. Finally argue that the formulas derived in ¢) still give
mixed strategies and payoffs for the games corresponding to these order-
ings.

A simple game is called improper if it has a pair of winning coalitions that
have no members in common. Otherwise the game is called proper.

a) Let G be the simple game whose minimal winning coalitions are ABE,
BFH, BC, CEFH, CDH. Show that G is an improper game, and discuss
what might happen if players A, B, and E favored a certain action while
players C, D, and H favored an incompatible alternative action.

b) By deleting a single MWC from the game G of part a), convert it into
a proper game.

¢) Prove that a general weighted voting game [gq; w;,w;, ws,...,w,] is
properif g > 3w+ wy+ -+ +w,).

Recall the simple game SG of the text whose MWC'’s are AB, ACD,
CDE. Prove that there is no choice of quota ¢ and weights w; that
represents SG as a weighted voting game [g; w;, wy, w3, w,;, ws]. [Hint:
assume such quota and weights do exist. Use the fact that AB is a MWC
to conclude that w, > w;. Show by analogous arguments that w; > w,
and wy > w, thus establishing the desired result by contradiction.]

Consider the weighted voting game [5;3,2,1,1, 1].

a) List all MWC’s for this game. Call the players A, B, C, D, and E.

b) Compute the power of each of the 5 players in this game.

¢) Compare the power of player B (having a weight of two) with the
power of C, D, or E. Explain why this result is “paradoxical.”

Methods for computing the Shapley-Shubik and Banzhaf power indices
for a simple game are given below. Let n be the number of players in the
game.
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Shapley-Shubik

1) List all permutations (voting orders) of the players. There are n! of
them.

2) Call a particular ordering a pivor for player i if the coalition made up
of all players preceding i in the ordering is not winning, but becomes
winning when player i is added.

3) Define the

# of pivots for i

Shapley-Shubik power of i = l

Banzhaf

1) List all nonempty subsets (coalitions) of players. There are 2" — 1 of
them.

2) Call a coalition containing i a swing for player i if the coalition is
winning, but becomes nonwinning when i is removed. Note: a winning
coalition may provide a swing for more than one player or no player at
all.

3) Define the

Banzhaf power of i = S, /S,

where S;= # of swings for player i and $ = §,+ S;+:-- +85,, the
total number of swings.

a) Compute Shapley-Shubik and Banzhaf power values for the game
BL?= (AC,AD, ACD). [Hint: the answers are (2/3,1/6,1/6) and
(3/5,1/5,1/5)]

b) Argue for a general simple game that the individual powers must sum
to 1 for each power index we have looked at: Deegan-Packel, Shapley-
Shubik, and Banzhaf.

Apply the rules of Figure 7 to the HEXPAWN game tree of Figure 8 to
complete the labeling of the nodes of the tree (with B’s or W’s). Then
explain how it follows that Black (the player going second) will always
win under perfect play. Finally, give a clear specification of a winning
strategy for Black in Black’s first two moves. Your strategy should, of
course, anticipate all possible choices made by White in White’s first two
moves.

Consider a game between A and B whose payoffs are “win for A,” “win
for B,” and “draw.” Extend the reasoning of Figure 7 to draw three
pictorial capture rules for a node at which it is A’s move. Label the
captured node with caprured by B, captured by A, and draw.



CHAPTER 7

Odds and Ends

Off to the races

There are, to be sure, many additional gambling and game-related
topics with mathematically interesting foundations. In this chapter we
consider a few of these. The choices we make will be somewhat
arbitrary, based partly on popularity and the mathematics involved, but
mostly on personal preference. We begin with the ubiquitous and
moneyed activity of horse racing, “the sport of kings.”

Horse racing has a rich and colorful history which we reluctantly
bypass. We proceed directly to the elementary but interesting arithmetic
underlying the pari-mutuel betting system used at all legal tracks (horse,
harness, and dog) in the United States and Canada. Bettors may wager
in amounts of $2 and up on a specific horse to win (finish first), place
(finish either first or second), or show (finish among the top three).
Amounts bet in each of these ways are registered by machines at the
ticket windows, with separate pools for win, place, and show money. The
ticket machines are linked electronically to the totalizator which com-
putes and displays (on the tore board) pre-race totals for each pool,
approximate current win odds for each horse, and post-race payoffs.

To illustrate the operation of the totalizator we run through the
procedures for a fictitious five-horse race. The racing behavior of our
horses will be governed by various well-defined randomizing techniques.
This is clearly not realistic, but it will serve to review some of the
probabilistic ideas of earlier chapters. We shall also see how the final
payoff odds are determined solely by the betting that takes place, with
the morning line (in our case true odds) only serving as pre-betting
estimates made by some official “tout.”

In Table 17 we list the horses, their finishing rules, and their “starting”
order. The strange animals in our race run in the following manner.
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TABLE 17
Horses, Post Positions and Rules for Finishing
Post Position Horse Requirement for Finishing
1 Double Six  Roll double sixes
2 Bi-Nomial  Exactly 3 heads in 4 flips
3 Flip Ahead  Get a head in 1 flip
4 Roll Four Roll a four on a single die
5 None Above None of above horses finishes in given round

Finishing requirements are tested in order of post position. The first
random event occurring defines the winner. After a winner is obtained
(this must happen in the first “round” because of the finish rule for
None Above), we start at the beginning of the list and repeat the
randomizing activities for the remaining horses, continuing until a
“success” occurs. This defines the place horse. The show horse is found
by repeating this process a third time. (The probability that a place or
show horse will never be determined is zero.)

The racing form for our strictly probabilistic horses is much simpler
than a real racing form, provided the reader is well versed in elementary
probability theory. Indeed, we can compute exact probabilities for all
win, place, and show results for our race. Computations for place and
show probabilities are quite messy, so we concentrate on the win
probabilities and odds. This corresponds to the fact that racetracks only
provide pre-race odds or a morning line for win bettors. The reasoning
behind the win probabilities derives completely from the probability
rules developed in Chapter 2. Thus,

p(Win for Double Six) = % ~ .028,

giving odds against of (1 — )/ % =35 or 35: 1.
The probability of getting exactly 3 heads in 4 flips of an honest coin
is given by C, 5(1/2)*= 1/4. Thus,

p(Win for Bi-Nomial) = p(No Win for Double Six)- %

=35 1_35
36 4 144
=~ .243.
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Close and easily stated odds corresponding to .243 are 3: 1 against. The
remaining calculations proceed in this fashion until finally

p(Win for None Above) = % . % . % . % = —]5_;% ~ .304

(about 5 : 2 against).
Table 18 gives the full theoretical story.

TABLE 18

Probabilities of Winning and “True” Odds Against
Post Position Horse Win Probability “True” Odds Against

1 Double Six .028 35:1
2 Bi-Nomial 243 3:1
3 Flip Ahead 365 3:2
4 Roll Four .061 15:1
5 None Above 304 5:2

Before or while the betting windows are open, the “rational” win
bettor makes a personal estimate of the win probability for each horse.
This estimate may be based upon many complex factors such as post
position, past performance, jockey, track conditions, other horses, and
inside information. Often other more mysterious factors such as colors,
names, and superficial appearance of the horses can be brought into the
“analysis.” Bets are then made at some point during the fifteen minutes
or so that the windows stay open before the start of the race. Table 19
gives some hypothetical win, place and show bet totals. The reader
should note the 20 percent rakeoff (this figure varies from about 15

TABLE 19

Win, Place and Show Pools with Totals
Post Position Horse Win (§) Place ($) Show ($)
1 Double Six 975 1,000 600
2 Bi-Nomial 4,000 3,000 1,300
3 Flip Ahead 4,300 4,000 4,500
4 Roll Four 1,070 400 100
5 None Above 2,155 1,600 1,000
TOTALS $12,500 $10,000 $ 7,500
— 20 percent for track /state - 2,500 - 2,000 - 1,500

Totals for payoffs $10,000 $ 8,000 $ 6,000
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percent to 20 percent in different locales) for the track and the state.
This provides the “house edge” with a few small exceptions to be noted
below.

Table 20 illustrates the computation for this win pool now made by
the totalizator. As we shall see, the payoffs are determined completely
by the overall totals for each horse in the win pool. We indicate how
this is done by explaining the computations for Roll Four. As men-
tioned earlier, the morning line is estimated before the betting and is
not, in the real horse world, a result of computation. To compute the
payoff on a win for Roll Four, we take the $10,000 available for
successful win bettors (Table 19) and divide it by the $1,070 wagered on
Roll Four to win. This gives 10000/1070 = 9.346 as the hypothetical
dollar return for each dollar wagered on Roll Four. Since prices are
based on the payoffs for a $2 ticket, this amount is doubled to 18.692.
This figure is then rounded down to the nearest multiple of 10 cents to
give a $2 bet payoff of $18.60 on a win for Roll Four. This figure, unlike
the odds, is not posted unless the race is won by Roll Four. The last two
columns show how much of the $10,000 win pool money is actually paid
out, with the remainder or breakage providing added revenue to the
track. The payoffs on the other horses are computed similarly. Note that
the total payoff and breakage (which do not appear on the tote board)
serve to increase slightly the already healthy house edge.

TABLE 20

Final Odds and Payoffs for Win Pool

Amount to be divided: $10,000
Post Morming Final Board $2Bet  Total

Position  Line Odds Payoff  Payoff Breakage
1 35:1 9:1 20.50  9,993.75 6.25
2 3:1 3:2 5.00 10,000.00 0.00
3 3:2 3:2 460 9,890.00 110.00
4 15:1 8:1 18.60  9,951.00 49.00
5 5:2 7:2 9.20 9,913.00 87.00

Computations for the place and show pools are more complex. They
are not posted (and perhaps not performed) until the race has been
completed. We present the calculations for a show pool based upon a
4-5-2 finish (Roll Four, then None Above, then Bi-Nomial) in Table 21.

The most subtle idea in Table 21 is the necessity of subtracting from
the $6000 pot the total dollar amount of successful show bets ($2400 in
our example) before dividing the pot by three. This subtraction must be
done because successful bettors must first get their ticket purchase
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TABLE 21
Payoffs for Show Pool when Three Top Finishers are #4, #5, and #2
Amount to be divided: $6,000
Amount of successful show bets: $2,400 ($100 + $1,000 + $1,300)
Amount left for division: $3,600
Divided 3 ways: $1,200
Post Position $2 Bet Payoff Total Payoff Breakage
1 0.00 0.00 0.00
2 Showed 3.80 1170.00 30.00
3 0.00 0.00 0.00
4 Won 26.00 1200.00 0.00
5 Placed 4.40 1200.00 0.00
TOTALS: $3570.00 $30.00

payments back before actual profits are computed. Once this is done,
the remaining pot is split three ways (one share for each of the
successful show horses). Focusing on Roll Four again, we divide this
$3600/3 = $1200 pot into 100 equal shares (from Table 19) to get a
$12 profit for each $1 bet on Roll Four. This is then doubled to give a
$24 profit on a $2 bet and hence a $26 payoff (the $2 wager is returned
as well) for a successful $2 show bet on Roll Four. Payoffs on None
Above and Bi-Nomial are obtained in similar fashion.

Several observations are now in order. The computations of Table 21
do not depend on the order in which horses 2, 4, and 5 finish as long as
they are the first three across the line. On the other hand, if anyone of
these horses finished “out of the money,” all the payoffs would have to
be recomputed (why?). Since order is unimportant, a full development
of show payoffs would require Cs 3= 10 such tables! Another observa-
tion, which the reader may already have made, is that the show payoff
on Roll Four well exceeds the win payoff. Table 22 shows the “official”
payoffs on a 4-5-2 finish as they might be posted on the tote board. The
“place” calculations are left for the reader.

TABLE 22
Final $2 Bet Payoffs on a 4-5-2 Finish
Post Position Horse Win Place Show
4 Roll Four 18.60 17.00 26.00
5 None Above — 5.70 4.40

2 Bi-Nomial — — 3.80
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The show payoff on Roll Four illustrates the idea known as a “hole in
the show pool.” Despite the fact that the show bettor has three ways to
collect, the show payoff is better than the considerably less probable
win payoff. The search for holes is an important strategic consideration
for the sensitive bettor, so we elaborate upon it somewhat. The initial
theory behind betting on holes is relatively easy. The bettor computes or
estimates the percentage of money bet on a given horse in the place
pool (the tote board provides current figures). This is repeated for the
show pool. If either of these percentages is significantly less than the
corresponding win pool percentage, the possibility of a hole exists. In
addition to the computational challenge (the bettor does not have much
time to do this), several factors complicate the process. Most seriously,
lots of other bettors may also spot a glaring potential hole, and it is not
uncommon to see your delicately selected hole fill in a hurry just before
the race starts. Betting at the last minute may reduce this risk, but all
the other hole seekers know this too. A second complication with hole
betting is the fact that the payoff depends on which other horses split
the pool with the one you select. If a favorite (or two) helps to fill out
the place (or show) positions, the money to be divided will be greatly
reduced after ticket prices are subtracted. The hopeful hole bettor’s
share is then reduced. If, on the other hand, longshots are involved,
relatively less ticket purchase money will be subtracted (recall our show
payoff on Roll Four) and the likelihood of a dramatic hole is greatly
increased. This added uncertainty reduces the chances for startling
payoffs such as the show payoff on Roll Four, but careful inspection for
holes can still increase a bettor’s expectation significantly.

This is another rare but intriguing phenomenon which can guarantee
the bettor a positive expectation and cause the track to lose money on a
race. A minimum return of $1.05 is required by law on each dollar
successfully bet (10 cents profit on each $2.00 ticket). If betting on the
favorite(s) is so heavy that the computed payoffs drop below $2.10, the
track must make up the difference. The following model shows one way
this might happen.

Imagine a show pool where the combined dollar amount wagered on
the three favorites is S, with the remaining dollars in the show pool
summing to R. If all three favorites finish in the money, then we have

Show pool total: S+R
— 20 percent for track/state: - 2(S+R)
Total for payoff: 8(S + R)

Required payoff: 1.05(S)
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The track will have to relinquish some of its “take” if 1.05S > .8(S + R)
or S/(S + R) > .8/1.05 = .762. Thus the track will not be able to take
its full 20 percent rakeoff if somewhat more than 3/4 of the money in a
pool was on horses that paid off in that pool. (The reader can check that
our model can be applied just as well to the win or place pool.) Carrying
this one step further, the track can actually lose money on a race if
1058 >S+R or S/(S+R)>1/105=.952 (95 percent of the
money on the favorite(s)). Situations where a favorite actually has a
perceived .95 probability of winning are very rare. When they do arise,
you can be sure there are some smart and heavy bettors who try to
make the most of it. The track may have reduced profits on a day when
this occurs.

As with other house edge gambling activities, track bettors sometimes
win and occasionally win heavily. Unlike casino games (except black-
jack), there are ways to obtain relative advantages over the “average”
bettor. The mathematical approaches we have discussed can help, but
far more valuable is extensive knowledge of the horses, their jockeys,
and numerous “inside” factors. People with such knowledge can win
fairly consistently at the track (though many more profess to such
knowledge than actually have it). For the rest of us the virtually
automatic 20 percent track edge becomes even higher, putting the
beautiful sport of horse racing right alongside Keno as one of the least
mathematically favorable of betting activities.

Lotteries and your expectation

An intriguing method of public fund raising is provided by an
increasingly popular procedure known as the lottery. As governments
seek additional ways of generating revenue, the state lottery often
emerges as a creative way to extract voluntary contributions from a
citizenry already sensitive to increasing taxes on sales, property, or
income. While state lotteries are easier to implement and administer
than race track betting, promoting and maintaining their popularity
requires a blend of slick advertising methods and clever probabilistic
design. In this section we take a close look at two specific games used in
the Illinois State Lottery. Their description and design should provide
illustrations of how typical state lottery tickets work. The mathematical
analysis of these games will serve as further applications of the ideas on
probability and expectation developed in earlier chapters. In addition,
the analysis will show how to compute what individual ticket holders
can mathematically expect and what state governments can count on
from participation in a state lottery.
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Figure 9 pictures the front and back of a ticket for POT OF GOLD, a
relatively simple lottery game. As can be seen from the rules on the
back, a 6 digit number will be randomly determined by means of a
drawing. Payoffs will be given for tickets matching two or more con-
secutive digits, starting with the left hand digit and moving from left to
right. Thus, if the 6 digit drawing number had been 058442 (a 3 digit left
to right match), the ticket of Figure 9 would have been worth $50. If, on
the other hand, the drawing number had been 158442, the ticket would
be worthless since the initial left hand digit does not match.

To compute the expectation on this 50 ¢ ticket, we first determine the
probabilities of matching exactly 2, 3, 4, 5, or 6 digits in order. Since
there are precisely 1 million six digit numbers (000000 through 999999)
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Figure 9 A typical POT OF GOLD lottery ticket.



124 MATHEMATICS OF GAMES AND GAMBLING

each assumed to be drawn with equal probability, we have

1

T:000,000 — 000001

p(6 digit match) =

Similarly, 10 of these 1 million numbers will provide at least a 5 digit
match. Since one of these is in fact a 6 digit match, we obtain

. . 9
p(5 digit match) = 1,000,000 = .000009.
TABLE 23
Probabilities and Payoffs for Pot of Gold
Event Probability Payoff Expectation
2 digit match .009 $ 5 $ 045
3 digit match .0009 $ S0 $ .45
4 digit match .00009 $ 250 $ .00225
5 digit match 000009 $ 2,500 $ .0225
6 digit match .000001 $90,000 $ .09t
TOTALS .010000 $ .2250

Working backwards in similar fashion, we obtain the probabilities listed
in the second column of Table 23. Note that these results correspond
directly to information given on the back of the ticket as pictured in
Figure 9. By summing them we see that a ticket holder has just one
chance in a hundred of winning something on his ticket.

The payoffs corresponding to the number of digits matched are,
except for the jackpot, specified directly on the back of the POT OF
GOLD ticket.! Multiplying probabilities by payoffs for each event, we
obtain the contributions to the expectation from each event in column
4. Summing these, we find that X(POT OF GOLD ticket) =
$.225 = 223 cents. Since the cost of the ticket is 50 cents, it follows that
the ticket purchaser can expect to lose 273 cents on each ticket
purchased. The “state edge” on this game is, under our assumptions, a
whopping 55 percent. Nowhere is it specified who is to be the recipient
of this pot of gold.

tThe fine print on the back of the ticket indicates that the payoff for a 6 digit match must
be at least $15,000. A phone call to the Illinois State Lottery office determined that this
jackpot payoff accumulates at the rate of $90,000 for each milhion tickets sold, so we use
thus figure for the payoff. In practice jackpot winners have always been determined before
2,500,000 tickets were sold.
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Figure 10 A typical LUCKY STARS lottery ticket.

The second game we analyze is described by the $1 LUCKY STARS
ticket pictured in Figure 10. In this game a drawing is held to choose
two 2 digit numbers, two 3 digit numbers, and one 5 digit number.
Payoffs are awarded for matching one of the 2 digit numbers, both of
the 2 digit numbers, one of the 3 digit numbers, or the 5 digit number.
Further action, artfully tied in with current fascination with astrology, is
available for dedicated LUCKY STAR players if they can collect all 12
zodiac signs.

Table 24 gives probabilities, payoffs, and expectations for the various
matching events on a LUCKY STARS ticket. As we shall see, the
computation of probabilities is more interesting and challenging than
the analysis for POT OF GOLD. We first note that, since ticket and
drawing numbers are randomly selected, duplicates (i.e. repetition of the
same 2 or 3 digit number) on a single ticket or in the drawing can result.

To compute the probability of a double match (i.e., matching both 2
digit numbers on a ticket) we proceed as follows. When both ticket
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TABLE 24
Probabilities and Payoffs for the Matching Events in Lucky Stars
Event Probability Payoff Expectation
Match both 2 digit #’s 000397 $ 10 $ .00397
Match one 2 digit # 039006 $ 5 $ .19505
Match one 3 digit # 001999 $ 50 $ .09995
Match the S digit # .00001 $10,000 $ .10000
TOTALS $ .39895

numbers coincide (probability = 1/100), then a double match can oc-
cur in one of three disjoint ways:

(i) from the first 2 digit number drawn, but not the second

b4

(probability - L. )

100 100

(ii) from the second 2 digit number drawn, but not the first
(probability =—" ———-);
(iii) from both the first and second numbers drawn

(probability = -1%6 . -1%6)

Summing the probabilities in (i), (ii), and (iii), multiplying by the 1/100
probability of having identical 2 digit numbers on a ticket, we obtain

199

p(double match with identical 2 digit ticket numbers) = 17000.000

For the case when the 2 digit ticket numbers differ (probability =
99/100), both of the drawn numbers must match the ticket numbers.
Accordingly

p(double match with different 2 digit ticket numbers)

LN -
100| 100 100 ] 1,000,000 °
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Adding these probabilities, we conclude that the probability of match-
ing both 2 digit numbers is .000397.

The probability of obtaining a single 2 digit number match is ob-
tained in similar fashion. We summarize the reasoning in the expression
below:

p(ticket #°s differ)
p(drawn #’s coincide)
p(drawn #’s differ)

2{L.L+_9_9_[L.£+_9_8_._3_]}
100100 100 100|100 100 100 100])°
p(drawn # gives match) '\p(left or right ticket #

is matched, not both)

Performing the arithmetic gives a probability of 39,006/1,000,000 =
039006 for a double match. We note this probability is mildly incon-
sistent with the “average winners/million” given on the back of the
LUCKY STARS ticket. Computation of the remaining probabilities in
Table 24 is more straightforward and we obtain expectations as shown
in the right hand column,

Incorporation of the zodiac BONANZA part of the LUCKY STARS
ticket requires more information than is given on the ticket and some
simplifying assumptions. Since a determination of what percentage of a
group of 1 million ticket holders will make themselves eligible for the
zodiac subgame is impossible, we average things out as follows: The
twelve BONANZA finalists, according to the Illinois Lottery News,
receive payoffs with a distributions indicated in Table 25. Since these
payoffs are awarded after 1 million tickets are sold, we can regard the
zodiac BONANZA as offering twelve additional prizes, each with a
probability of one millionth.

TABLE 25

Probabilities and Payoffs for the Zodiac Subgame in Lucky Stars
Event Probability Payoff Expectation
Top Prize .000001 $50,000 $ .05
Second Prize .000001 $ 5,000 $ .005
Third Prize .000001 $ 2,500 $ .0025
Fourth Prize

(9 awarded) .000009 $ 500 $ .0045
TOTALS .000012 $ 062
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From this table we see that the zodiac subgame contributes an
expectation of 6.2 cents to the $1 LUCKY STARS ticket. Although the
matching events on the ticket are not mutually exclusive, it still makes
approximate sense to combine this figure with the expectations from
Table 24 to obtain an overall expectation of 46.1 cents on the one dollar
ticket. Thus LUCKY STARS provides a state edge of 53.9 percent,
much the same as the state’s edge in POT OF GOLD. Summing the
individual probabilities in column 2 of Tables 24 and 25, we obtain an
estimate (why would it not be exact?) that p(winning something) ~ .0414
or about 1 chance in 24.

As it turns out, all the different Illinois State Lottery games are
designed to give the state an edge of about 55 cents on the dollar. This
edge is in fact higher because of unclaimed prizes. During the revenue
year ending June 30, 1978 almost 83.5 million dollars of Illinois lottery
tickets were sold. Subtracting 33.7 million dollars for prize money and
12.7 million dollars for expenses and commissions, we arrive at a figure
of 37.1 million dollars net revenue for that year. This profit, the state
lottery publications are quick to point out, was distributed for human
services, tax relief for the elderly, revenue sharing, and aid to educa-
tional institutions at all levels. From the point of view of state govern-
ment, the lottery is apparently a successful and valuable institution.

Obviously the outlook is not so rosy for the individual citizen and
potential lottery ticket purchaser. From a mathematical standpoint, the
expectation of losing 55 cents on every dollar spent makes such lotteries
by far the worst wager we have encountered in our tour of organized
gambling activities. For some a dollar or so a week, even at such
unfavorable odds, may seem a reasonable price for the excitement of
following the lottery and dreaming about that BIG PAY DAY (the
name of another Illinois lottery game). Others may spend more than
they can really afford in their quest for action and instant wealth.

The gambler’s ruin

In Chapter 5 we developed methods for determining the probability
of being ahead (or behind) by more than a specified amount after a
given number of bets in a fixed-odds game. By using the normal
approximation to the binomial distribution and repeated computations,
we were able to construct Table 15 to obtain these probabilities for a
variety of situations. In this final section we consider the more absolute
question of determining the probability that a gambler, with an un-
specified number of repeated bets, will break the bank before going
broke or vice versa. The answer we present to this problem, known as
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the gambler’s ruin, has virtues of elegance and generality—just two tidy
formulas will provide probabilities for all cases we might want to
consider. In addition to supplying one more application of elementary
mathematics to games and gambling, our results will enable us to take a
look from another angle at a gambler’s prospects against the house.

Suppose a gambler starts with i units of money and the casino with
T — i units, so that T represents the combined amount of money held
by both the gambler and the house. The gambler plans to engage the
house in repeated, 1 unit, even money bets in a fixed-odds game until
either he or the house has all 7 units. Let p denote the probability that
the gambler wins 1 unit on each independent bet, so that g=1—p
gives the probability that the house wins any given 1 unit bet.

Suppose that at some point in this sequence of “gamble to the death”
bets the gambler has i units. From that point on the gambler’s holdings
may bounce around, rising or falling 1 unit with each bet, until his
holdings reach T (we call this success) or 0 (we call this ruin). In either
case, the game immediately stops since either the gambler or the house
is broke. For each i = 0,1,2,3,..., T, let us define the crucial probabil-

ity a; by:
a, = p(the gambler succeeds given a current holding of / units).

Of course it then follows that

1 — a, = p(the gambler is ruined given a current holding of i units).

To warm up for the important observation that follows, we note that the
gambler is broke if he has 0 units; therefore

a,=0.

If his current holding is 1 unit, his only way to success is to win the next
bet and then to succeed with 2 units. Hence

a|=p°a2.

With a holding of 2 units he has two ways to succeed: win the next bet
and then succeed with 3 units or lose the next bet and then succeed with
1 unit. Thus

a=p-az+q-a.
When the gambler has all T units, he has succeeded:

aT= 1.
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Using the same reasoning that gave us the formula for a,, we get the
following set of equations among these T + 1 probabilities:

a,=0, ar=1

(1) a,=p-a, +qa_, i=123,..,T-1

The above set of equations is one example of an interesting and
widely applicable mathematical construct known as a difference equa-
tion. While there exist various powerful and systematic techniques to
solve such equations (i.e., to find an explicit formula for a;, not
involving the other g;), we shall handle this one by elementary alge-
braic techniques. We work in steps, urging the reader to follow the
algebra closely as we go along.

First we note that equation (1) above can be rewritten, using the fact
that a,= pa;+ (1 — p)a, = pa, + qa,, as follows:

pa;,+qa,=pa,.,+qa;_,,
which is equivalent to
q
41— 4;= ;(ai_ a;_y)-

Writing this out for each i = 1,2,..., T — 1, we obtain

-

a,—a;= %a, [recall that = 0]

q 2 . q
a;—a,=->(ay—a;) = a sincea, —a,= ~a
374y p( 2= @) ( ) 1 [ 24T 1]

q 3 )’
a,— a3=;(a3— a,) = ( ) a, [sincea3— a,= (;) a,

) la;_1—a;,_,==(a,_,—a,_3)= (%) '512 [reasoning as above ]

_q _(q)T—Z
Qr_1— ar_y=*(ar_,—ar_3)=(~) a
-1~ 9r_2 p( -2~ 4r_3) ») &
q q T-1
1 —ar—1=;(ar-|‘ ar_,) = (;) a, [recall that a; = 1].
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If we now add the left sides of all the above equations, something
helpful happens—the sum collapses to 1 — a, thanks to massive
cancellation of intermediate terms. Adding the right hand sides and

equating, we obtain
2 3 T—-1
Lo (2 4 (2) 4.4 (2) ]
V4 P P P

Solving for a,, we obtain

1—a,=a

1

= 2 T-1"
1+-‘l+(1) +...+(1)
¥4 ¥4 ¥4

Returning to the system of equations (2), we repeat the above proce-
dure, this time working only with the first i — 1 equations in (2). We

then obtain
2 i—1
a-a=a Lo (8 +r (8]
p p P

Solving for a; and substituting the value for a; computed above, we
finally obtain

3 a,=

i=123,..,T—-1

In these formulas for each a;, the geometric progressions appearing
in both numerator and denominator indicate that further simplification
is possible. We break the analysis into 2 cases.

Case I: p=gq = 1/2 (a fair game)
In this case p/q = 1, and our results reduce to

i=0,12,...,T.

a,=

£
H T’

We thus are led to the simple and reasonable conclusion that, under our
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assumptions, the gambler’s probability of breaking the bank equals the
ratio of his current bankroll to the combined holdings of him and the
house. Even if a bettor found himself magically engaged in a fair game
with a casino, the relative insignificance of his holdings as compared to
those of the house should strongly discourage any serious hopes of
breaking the bank.

Case2: p#q
In this case ¢/p # 1, and the geometric progression formula

k
g (a\ AN - (%)
e da (L) 4+ () =—4—
p \p P 1-4
P
is applicable (the denominator on the right is nonzero). Applying this
formula to (3) with k =i and then & = T and cancelling, we obtain

(3

@ = — i=0,1,2,...,T.
-
?

To see the full impact of this general formula for the probability of
breaking the bank, we first look at two special subcases.

Subcase 2a: q>p and i is large enough that (gq/p) is “large”
compared to 1. In this instance, the quotient [1 — (¢/p)'1/[1 — (g/p)7]
is not significantly affected if the 1’s are dropped in the numerator and
denominator. Accordingly, we obtain a,~ (p/q)"~". Hence the proba-
bility of breaking the bank is determined by taking a probability ratio
less than unity to a power equal to the number of units in the house’s
bankroll. We apply this result to an even money Las Vegas roulette
situation (p = 18/38 and ¢ = 20/38). Here p/q = .9, and even if the
gambler and the house start with equal 50 unit bankrolls, (so that
(¢/p) = 194.03 > 1), the gambler’s probability of breaking the bank is
(:9)'® = .005. The gambler will be ruined 199 times out of 200.

Subcase 2b: p > q and T is large enough that (g/p)” is essentially
0. In this positive gambler’s edge situation, the denominator 1 —
(9/p)"~ 1. We thus obtain a,~ 1 — (g/p)' for the gambler’s probabil-
ity of breaking the bank, and (¢/p)’ for the probability of the gambler’s



ODDS AND ENDS 133

ruin. In this unlikely setting, it is the house that faces almost sure ruin
provided the gambler is given a reasonable starting bankroll (so that
(g/p) is close to 0) and plenty of time.

TABLE 26

Probabilities of Breaking the Bank on Even Money Bets

p = probability of winning on each independent bet

i = number of units the gambler starts with

T = total number of units held by the gambler and the house
Optimal
Blackjack Fair Game Craps Roulette  Bookmaker

T = 100 (p=53) (p=5) (p=493) (p=.474) (p= .45

i=1 132 20100 0018 0000 .0000
i=35 4512 0500 0097 .0000 L0000
i=10 6992 .1000 0209 .0001 0000
i=25 9504 2500 0656 0004 0000
i=50 9975 5000 1978 0055 0000
i=75 .9999 7500 4640 0741 0066
i=90 1.0000 9000 7380 3531 134
i=95 1.0000 9500 .8609 5942 3667
i=99 1.0000 9900 9706 9011 8182

T=10000( (p=.353) (p=.5) (p=493) (p=.474) (p= .45

i=2 2136 0002 20000 0000 0000
i=5 4516 0005 0000 .0000 0000
i=10 6992 0010 0000 0000 L0000
i=25 9504 0025 0000 .0000 0000
i=350 9975 0050 .0000 0000 .0000
i = 9950 1.0000 9950 2466 L0055 0000
i=9975 1.0000 9975 4966 0741 0066
i= 9990 1.0000 9990 7558 3531 134
i = 9995 1.0000 9995 8694 5942 3667

In Table 26 we apply our formulas for a; to compute probabilities of
breaking the bank for various values of p, i, and T. The p values have
been chosen to correspond to some of the gambling situations we have
studied in this book. We assume all bets are even money (not quite
correct for craps and blackjack) and that “optimal” blackjack play
secures a 6 percent edge for the gambler.

The top half of the table considers situations where two adversaries
have a combined bankroll of 100 units. While this figure is unrealisti-
cally low for a casino setting, the analysis of this section is, of course,
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applicable to interpersonal gambling situations as well. The values in
the table show just how critical the value of p is for eventual success or
ruin. The i = 50 row highlights this when starting bankrolls are equal.
Clearly the relative sizes of i and T — i are also important; but as p
drops below .5, even larger values of i cannot withstand the probabilis-
tic pressure of repeated play.

The lower half of Table 26 uses T = 10,000 in order to reflect
circumstances closer to casino gambling (if each unit bet is $100, this
would put the total bankroll at a million dollars—rather low for a
casino). Here the importance of p is still more pronounced. Even
uncharacteristically high values of i have little impact on avoiding the
gambler’s ruin where the edge is in favor of the house. The optimal
blackjack column (p = .53) shows how dramatically things are reversed
when the gambler manages to have a positive edge.

Table 26 yields no information about how many repeated plays might
be required for the gambler’s eventual ruin or success. Table 15 of
Chapter 5 does offer some insight into the surprisingly large numerical
answer to this question. More advanced mathematical techniques are
available and provide a formal proof, but we simply assert that when p
is close to 1/2, the expected number of bets before ruin or success is
approximately i(T — i). If i = 100 and T = 10,000 this would give us
990,000 as the expected number of bets. Taking a rather optimistic
figure of 500 bets per hour for 20 hours a day, this gives an expected
gambling time of over 3 months before ruin or success. This example
helps to illustrate why the positive edge held by a skilled blackjack
player will not result in a quick cleanout of the casino. Working from
the other end, we note that there are actually hundreds of gamblers
playing simultaneously against the house. This leads to very much larger
overall values of i, T, and i(T — i) and helps to explain why casinos
have not already accumulated all the gambling money available in the
world—the expected time for ruin is large enough to allow new genera-
tions of gamblers to arise.
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53
55
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6.4
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6.9

Answers to Selected Exercises

11 to 5 in favor of Walter

p(C) = 206/216; odds against B = 35:1

p(duplication with 4 dice) = 156/216 = 13/18

Hint: compute probabilities of each of the following events: win both
bets, win black and lose group of 4, lose black and win group of 4, lose
both bets.

a) X = —19/(37)? dollars &~ —1.39 cents

X=1/4

a)p=3/4; b)p=25/36

p(hit the blot) = 5/12; p(enter unable to hit) = 1/3

p=1/3

“best” solution: x =3,y =5

a) 1260

c)p =363/Cys,s

b) [1 — (2)5— 5-(I%$)*]-(810) (just over $1.96)

b) approximately 1/300

c)i)p=.08; i)p=0

b) X($1 insurance bet) = $2.00; X(no insurance) = $2.10

a) house edge = —3.5%

A should play A, with probability 5/8 and A, with probability 3/8;.
X(player A) = —11/8 units

c) X(player A) = —25/3 cents
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